Analysis of Mechanical Behavior of the Underlying Soft Tissue to Ischial Tuberosities Using Finite Element Method

Author(s):  
Diana Alicia Gayol-Mérida ◽  
Víctor Manuel Araujo-Monsalvo ◽  
José de Jesús Silva-Lomelí ◽  
Víctor Manuel Domínguez-Hernández ◽  
Marcos Martínez-Cruz ◽  
...  
2020 ◽  
Vol 33 ◽  
pp. 101181 ◽  
Author(s):  
Anahita Ahmadi Soufivand ◽  
Nabiollah Abolfathi ◽  
Seyyed Ataollah Hashemi ◽  
Sang Jin Lee

1984 ◽  
Vol 106 (1) ◽  
pp. 130-136 ◽  
Author(s):  
W. T. Asbill ◽  
P. D. Pattillo ◽  
W. M. Rogers

The purpose of this investigation was to gain a better understanding into the mechanical behavior of the API 8 Round casing connection, when subjected to service loads of assembly interference, tension and internal pressure. The connection must provide both structural and sealing functions and these functions were evaluated by several methods. Part I discusses the methods of analysis, which include hand calculations using strength of materials, finite element method via unthreaded and threaded models, and experimental analysis using strain gages. Comparisons of all three methods are made for stresses and show that the finite element method accurately models connection behavior.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Qiu Guan ◽  
Xiaochen Du ◽  
Yan Shao ◽  
Lili Lin ◽  
Shengyong Chen

Scalp soft tissue expansion is one of the key medical techniques to generate new skin tissue for correcting various abnormalities and defects of skin in plastic surgery. Therefore, it is very important to work out the appropriate approach to evaluate the increase of expanded scalp area and to predict the shape, size, number, and placement of the expander. A novel method using finite element model is proposed to solve large deformation of scalp expansion in this paper. And the procedure to implement the scalp tissue expansion with finite element method is also described in detail. The three-dimensional simulation results show that the proposed method is effective, and the analysis of simulation experiment shows that the volume and area of the expansion scalp can be accurately calculated and the quantity, location, and size of the expander can also be predicted successfully with the proposed model.


2017 ◽  
Author(s):  
Andrea Mendizabal ◽  
Rémi Bessard Duparc ◽  
Huu Phuoc Bui ◽  
Christoph J. Paulus ◽  
Igor Peterlik ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document