Biomedical Applications and Biosafety Profile of Carbon Nanotubes-Based Composites

2021 ◽  
pp. 1-19
Author(s):  
Mansab Ali Saleemi ◽  
Eng Hwa Wong
2021 ◽  
Author(s):  
Marzia Soligo ◽  
Fausto Maria Felsani ◽  
Tatiana Da Ros ◽  
Susanna Bosi ◽  
Elena Pellizzoni ◽  
...  

Carbon nanotubes (CNTs) are currently under active investigation for their use in several biomedical applications, especially in neurological diseases and nervous system injury due to their electrochemical properties.


2015 ◽  
Vol 6 ◽  
pp. 508-516 ◽  
Author(s):  
Reece D Gately ◽  
Marc in het Panhuis

The reliable production of carbon nanotubes and nanofibres is a relatively new development, and due to their unique structure, there has been much interest in filling their hollow interiors. In this review, we provide an overview of the most common approaches for filling these carbon nanostructures. We highlight that filled carbon nanostructures are an emerging material for biomedical applications.


2021 ◽  
Vol 06 ◽  
Author(s):  
Raja Murugesan ◽  
Sureshkumar Raman ◽  
Arun Radhakrishnan

Background: Recently, Nanomaterials based nano-composite materials play the role of various field. Especially, Carbon nanotube based materials are involved in the bio-medical applications.Since, their exclusive and exciting property, researchers worldwide have extensively involved in trans-modulating the carbon nanotubes into a viable medico-friendly system. Objective: These active researches paved the path towards targeted drug delivery, diagnostic techniques, and bio-analytical applications. Despite these exciting properties, which accomplish the probable for biomedical applications, they hold Biosafety issues. Methods: This broad-spectrum review has discussed different aspects of carbon nanotubes and carbon nanotube-based systems related to biomedical applications. Results: Adding to this, a short chronological description of these tiny yet powerful particles given, followed by a discussion regarding their types, properties, methods of synthesis, scale-up, purification techniques and characterization aspects of carbon nanotubes. Conclusion: In the later part, the functionalization of carbon nanotubes was reviewed in detail, which is important to make them biocompatible and stable in biological systems and render them a great property of loading various biomolecules diagnostic and therapeutic moieties. Lastly, an inclusive description of the potential biomedical applications has been given followed by insights into the future.


2019 ◽  
Vol 74 (1) ◽  
pp. 197-208 ◽  
Author(s):  
Duha S. Ahmed ◽  
Mustafa K. A. Mohammed ◽  
Mohammad R. Mohammad

2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Boyang Huang

Abstract Carbon nanotubes (CNTs), with unique graphitic structure, superior mechanical, electrical, optical and biological properties, has attracted more and more interests in biomedical applications, including gene/drug delivery, bioimaging, biosensor and tissue engineering. In this review, we focus on the role of CNTs and their polymeric composites in tissue engineering applications, with emphasis on their usages in the nerve, cardiac and bone tissue regenerations. The intrinsic natures of CNTs including their physical and chemical properties are first introduced, explaining the structure effects on CNTs electrical conductivity and various functionalization of CNTs to improve their hydrophobic characteristics. Biosafety issues of CNTs are also discussed in detail including the potential reasons to induce the toxicity and their potential strategies to minimise the toxicity effects. Several processing strategies including solution-based processing, polymerization, melt-based processing and grafting methods are presented to show the 2D/3D construct formations using the polymeric composite containing CNTs. For the sake of improving mechanical, electrical and biological properties and minimising the potential toxicity effects, recent advances using polymer/CNT composite the tissue engineering applications are displayed and they are mainly used in the neural tissue (to improve electrical conductivity and biological properties), cardiac tissue (to improve electrical, elastic properties and biological properties) and bone tissue (to improve mechanical properties and biological properties). Current limitations of CNTs in the tissue engineering are discussed and the corresponded future prospective are also provided. Overall, this review indicates that CNTs are promising “next-generation” materials for future biomedical applications.


Sign in / Sign up

Export Citation Format

Share Document