2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Sebastian A. R. Ellis ◽  
Kevin J. Kelly ◽  
Shirley Weishi Li

Abstract The unitarity of the lepton mixing matrix is a critical assumption underlying the standard neutrino-mixing paradigm. However, many models seeking to explain the as-yet-unknown origin of neutrino masses predict deviations from unitarity in the mixing of the active neutrino states. Motivated by the prospect that future experiments may provide a precise measurement of the lepton mixing matrix, we revisit current constraints on unitarity violation from oscillation measurements and project how next-generation experiments will improve our current knowledge. With the next-generation data, the normalizations of all rows and columns of the lepton mixing matrix will be constrained to ≲10% precision, with the e-row best measured at ≲1% and the τ-row worst measured at ∼10% precision. The measurements of the mixing matrix elements themselves will be improved on average by a factor of 3. We highlight the complementarity of DUNE, T2HK, JUNO, and IceCube Upgrade for these improvements, as well as the importance of ντ appearance measurements and sterile neutrino searches for tests of leptonic unitarity.


2014 ◽  
Vol 92 (12) ◽  
pp. 1501-1527 ◽  
Author(s):  
Carlos Castro

A Clifford Cl(5, C) unified gauge field theory formulation of conformal gravity and U(4) × U(4) × U(4) Yang–Mills in 4D, is reviewed along with its implications for the Pati–Salam (PS) group SU(4) × SU(2)L × SU(2)R, and trinification grand unified theory models of three fermion generations based on the group SU(3)C × SU(3)L × SU(3)R. We proceed with a brief review of a unification program of 4D gravity and SU(3) × SU(2) × U(1) Yang–Mills emerging from 8D pure quaternionic gravity. A realization of E8 in terms of the Cl(16) = Cl(8) ⊗ Cl(8) generators follows, as a preamble to F. Smith’s E8 and Cl(16) = Cl(8) ⊗ Cl(8) unification model in 8D. The study of chiral fermions and instanton backgrounds in CP2 and CP3 related to the problem of obtaining three fermion generations is thoroughly studied. We continue with the evaluation of the coupling constants and particle masses based on the geometry of bounded complex homogeneous domains and geometric probability theory. An analysis of neutrino masses, Cabbibo–Kobayashi–Maskawa quark-mixing matrix parameters, and neutrino-mixing matrix parameters follows. We finalize with some concluding remarks about other proposals for the unification of gravity and the Standard Model, like string, M, and F theories and noncommutative and nonassociative geometry.


2006 ◽  
Vol 640 (1-2) ◽  
pp. 37-39 ◽  
Author(s):  
Pavel Kovtun ◽  
A. Zee

2019 ◽  
Vol 206 ◽  
pp. 09009
Author(s):  
Ha Nguyen Thi Kim ◽  
Van Nguyen Thi Hong ◽  
Son Cao Van

Neutrinos are neutral leptons and there exist three types of neutrinos (electron neutrinos νe, muon neutrinos νµ and tau neutrinos ντ). These classifications are referred to as neutrinos’s “flavors”. Oscillations between the different flavors are known as neutrino oscillations, which occurs when neutrinos have mass and non-zero mixing. Neutrino mixing is governed by the PMNS mixing matrix. The PMNS mixing matrix is constructed as the product of three independent rotations. With that, we can describe the numerical parameters of the matrix in a graphical form called the unitary triangle, giving rise to CP violation. We can calculate the four parameters of the mixing matrix to draw the unitary triangle. The area of the triangle is a measure of the amount of CP violation.


2020 ◽  
Vol 35 (01) ◽  
pp. 2050004
Author(s):  
Guo-Yuan Huang ◽  
Noboru Sasao ◽  
Zhi-Zhong Xing ◽  
Motohiko Yoshimura

Unitarity of the [Formula: see text] lepton flavor mixing matrix [Formula: see text] is unavoidably violated in a seesaw mechanism if its new heavy degrees of freedom are slightly mixed with the active neutrino flavors. We propose to use the atomic transition process [Formula: see text] (for [Formula: see text], [Formula: see text]), where [Formula: see text] and [Formula: see text] stand, respectively for the excited and ground levels of an atomic system, to probe or constrain the unitarity-violating effects of [Formula: see text]. We find that the photon spectrum of this transition will be distorted by the effects of [Formula: see text] and [Formula: see text] as compared with the [Formula: see text] case. We locate certain frequencies in the photon spectrum to minimize the degeneracy of effects of the unitarity violation and uncertainties of the flavor mixing parameters themselves. The requirements of a nominal experimental setup to test the unitarity of [Formula: see text] are briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document