scholarly journals Automatic Whole Heart Segmentation in CT Images Based on Multi-atlas Image Registration

Author(s):  
Guanyu Yang ◽  
Chenchen Sun ◽  
Yang Chen ◽  
Lijun Tang ◽  
Huazhong Shu ◽  
...  
Author(s):  
Said Khalid Shah

This paper describes the Fast Radial Basis Function (RBF) method for cardiac motion tracking in 3D CT using non-rigid medical image registration based on parameterized (regular) surfaces. The technique is a point-based registration evaluation algorithm which does register 3D MR or CT images in real time. We first extract the surface of the whole heart 3D CT and its contrast enhanced part (left ventricle (LV) blood cavity) of each dataset with a semiautomatic contouring and a fully-automatic triangulation method followed by a global surface parameterization and optimization algorithm. In second step, a set of registration experiments are run to calculate the deformation field at various phases of cardiac motion or cycle from CT images, which results into significant deformation during each phase of a cycle. The surface points of the whole heart and LV are used to register the source systole image to various diastole target images taken at different phases during a heart beat. Our registration accuracy improves with the increase in number of salient feature points (i.e. optimized parameterized surfaces) and it has no effect on the speed of the algorithm (i.e. still less than a second). The results show that the target registration error is less than 3[Formula: see text]mm (2.53) and the performance of the Fast RBF algorithm is less than a second using a whole heart CT dataset of a single patient taken over the course of the entire cardiac cycle. At the end, the results for recovery (or analysis) of bigger deformation in heart CT images using the Fast RBF algorithm is compared to the state-of-the-art Free Form Deformation (FFD) registration technique. It is proved that the Fast RBF method is performing better in speed and slightly less accurate than the FFD (when measured in terms of NMI) due to iterative nature of the latter.


2021 ◽  
Vol 1769 (1) ◽  
pp. 012016
Author(s):  
Kening Le ◽  
Zeyu Lou ◽  
Weiliang Huo ◽  
Xiaolin Tian
Keyword(s):  

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Rui Zhang ◽  
Wu Zhou ◽  
Yanjie Li ◽  
Shaode Yu ◽  
Yaoqin Xie

Nonrigid image registration is a prerequisite for various medical image process and analysis applications. Much effort has been devoted to thoracic image registration due to breathing motion. Recently, scale-invariant feature transform (SIFT) has been used in medical image registration and obtained promising results. However, SIFT is apt to detect blob features. Blobs key points are generally detected in smooth areas which may contain few diagnostic points. In general, diagnostic points used in medical image are often vessel crossing points, vascular endpoints, and tissue boundary points, which provide abundant information about vessels and can reflect the motion of lungs accurately. These points generally have high gradients as opposed to blob key points and can be detected by Harris. In this work, we proposed a hybrid feature detection method which can detect tissue features of lungs effectively based on Harris and SIFT. In addition, a novel method which can remove mismatched landmarks is also proposed. A series of thoracic CT images are tested by using the proposed algorithm, and the quantitative and qualitative evaluations show that our method is statistically significantly better than conventional SIFT method especially in the case of large deformation of lungs during respiration.


2018 ◽  
Vol 52 ◽  
pp. 166-167
Author(s):  
Sebastian Sarudis ◽  
Anna Karlsson ◽  
Dan Bibac ◽  
Jan Nyman ◽  
Anna Bäck

Cancers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1447 ◽  
Author(s):  
Yoshiki Kubota ◽  
Masahiko Okamoto ◽  
Yang Li ◽  
Shintaro Shiba ◽  
Shohei Okazaki ◽  
...  

We aimed to clarify the accuracy of rigid image registration and deformable image registration (DIR) in carbon-ion radiotherapy (CIRT) for pancreatic cancer. Six patients with pancreatic cancer who were treated with passive irradiation CIRT were enrolled. Three registration patterns were evaluated: treatment planning computed tomography images (TPCT) to CT images acquired in the treatment room (IRCT) in the supine position, TPCT to IRCT in the prone position, and TPCT in the supine position to the prone position. After warping the contours of the original CT images to the destination CT images using deformation matrices from the registration, the warped delineated contours on the destination CT images were compared with the original ones using mean displacement to agreement (MDA). Four contours (clinical target volume (CTV), gross tumor volume (GTV), stomach, duodenum) and four registration algorithms (rigid image registration [RIR], intensity-based DIR [iDIR], contour-based DIR [cDIR], and a hybrid iDIR-cDIR ([hDIR]) were evaluated. The means ± standard deviation of the MDAs of all contours for RIR, iDIR, cDIR, and hDIR were 3.40 ± 3.30, 2.2 1± 2.48, 1.46 ± 1.49, and 1.46 ± 1.37 mm, respectively. There were significant differences between RIR and iDIR, and between RIR/iDIR and cDIR/hDIR. For the pancreatic cancer patient images, cDIR and hDIR had better accuracy than RIR and iDIR.


Sign in / Sign up

Export Citation Format

Share Document