scholarly journals Gearbox Fault Diagnosis Based on Mel-Frequency Cepstral Coefficients and Support Vector Machine

Author(s):  
Tarak Benkedjouh ◽  
Taha Chettibi ◽  
Yassine Saadouni ◽  
Mohamed Afroun
Author(s):  
Murugaiya Ramashini ◽  
P. Emeroylariffion Abas ◽  
Kusuma Mohanchandra ◽  
Liyanage C. De Silva

Birds are excellent environmental indicators and may indicate sustainability of the ecosystem; birds may be used to provide provisioning, regulating, and supporting services. Therefore, birdlife conservation-related researches always receive centre stage. Due to the airborne nature of birds and the dense nature of the tropical forest, bird identifications through audio may be a better solution than visual identification. The goal of this study is to find the most appropriate cepstral features that can be used to classify bird sounds more accurately. Fifteen (15) endemic Bornean bird sounds have been selected and segmented using an automated energy-based algorithm. Three (3) types of cepstral features are extracted; linear prediction cepstrum coefficients (LPCC), mel frequency cepstral coefficients (MFCC), gammatone frequency cepstral coefficients (GTCC), and used separately for classification purposes using support vector machine (SVM). Through comparison between their prediction results, it has been demonstrated that model utilising GTCC features, with 93.3% accuracy, outperforms models utilising MFCC and LPCC features. This demonstrates the robustness of GTCC for bird sounds classification. The result is significant for the advancement of bird sound classification research, which has been shown to have many applications such as in eco-tourism and wildlife management.


2019 ◽  
Vol 13 ◽  
Author(s):  
Yan Zhang ◽  
Ren Sheng

Background: In order to improve the efficiency of fault treatment of mining motor, the method of model construction is used to construct the type of kernel function based on the principle of vector machine classification and the optimization method of parameters. Methodology: One-to-many algorithm is used to establish two kinds of support vector machine models for fault diagnosis of motor rotor of crusher. One of them is to obtain the optimal parameters C and g based on the input samples of the instantaneous power fault characteristic data of some motor rotors which have not been processed by rough sets. Patents on machine learning have also shows their practical usefulness in the selction of the feature for fault detection. Results: The results show that the instantaneous power fault feature extracted from the rotor of the crusher motor is obtained by the cross validation method of grid search k-weights (where k is 3) and the final data of the applied Gauss radial basis penalty parameter C and the nuclear parameter g are obtained. Conclusion: The model established by the optimal parameters is used to classify and diagnose the sample of instantaneous power fault characteristic measurement of motor rotor. Therefore, the classification accuracy of the sample data processed by rough set is higher.


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1496
Author(s):  
Hao Liang ◽  
Yiman Zhu ◽  
Dongyang Zhang ◽  
Le Chang ◽  
Yuming Lu ◽  
...  

In analog circuit, the component parameters have tolerances and the fault component parameters present a wide distribution, which brings obstacle to classification diagnosis. To tackle this problem, this article proposes a soft fault diagnosis method combining the improved barnacles mating optimizer(BMO) algorithm with the support vector machine (SVM) classifier, which can achieve the minimum redundancy and maximum relevance for feature dimension reduction with fuzzy mutual information. To be concrete, first, the improved barnacles mating optimizer algorithm is used to optimize the parameters for learning and classification. We adopt six test functions that are on three data sets from the University of California, Irvine (UCI) machine learning repository to test the performance of SVM classifier with five different optimization algorithms. The results show that the SVM classifier combined with the improved barnacles mating optimizer algorithm is characterized with high accuracy in classification. Second, fuzzy mutual information, enhanced minimum redundancy, and maximum relevance principle are applied to reduce the dimension of the feature vector. Finally, a circuit experiment is carried out to verify that the proposed method can achieve fault classification effectively when the fault parameters are both fixed and distributed. The accuracy of the proposed fault diagnosis method is 92.9% when the fault parameters are distributed, which is 1.8% higher than other classifiers on average. When the fault parameters are fixed, the accuracy rate is 99.07%, which is 0.7% higher than other classifiers on average.


Sign in / Sign up

Export Citation Format

Share Document