Virus Induced Gene Silencing Approach: A Potential Functional Genomics Tool for Rapid Validation of Function of Genes Associated with Abiotic Stress Tolerance in Crop Plants

Author(s):  
Ajay Kumar Singh ◽  
Mahesh Kumar ◽  
Deepika Choudhary ◽  
Jagadish Rane ◽  
Narendra Pratap Singh
2021 ◽  
Vol 22 (20) ◽  
pp. 11032
Author(s):  
Jamie A. O’Rourke ◽  
Michael J. Morrisey ◽  
Ryan Merry ◽  
Mary Jane Espina ◽  
Aaron J. Lorenz ◽  
...  

The soybean (Glycine max L. merr) genotype Fiskeby III is highly resistant to a multitude of abiotic stresses, including iron deficiency, incurring only mild yield loss during stress conditions. Conversely, Mandarin (Ottawa) is highly susceptible to disease and suffers severe phenotypic damage and yield loss when exposed to abiotic stresses such as iron deficiency, a major challenge to soybean production in the northern Midwestern United States. Using RNA-seq, we characterize the transcriptional response to iron deficiency in both Fiskeby III and Mandarin (Ottawa) to better understand abiotic stress tolerance. Previous work by our group identified a quantitative trait locus (QTL) on chromosome 5 associated with Fiskeby III iron efficiency, indicating Fiskeby III utilizes iron deficiency stress mechanisms not previously characterized in soybean. We targeted 10 of the potential candidate genes in the Williams 82 genome sequence associated with the QTL using virus-induced gene silencing. Coupling virus-induced gene silencing with RNA-seq, we identified a single high priority candidate gene with a significant impact on iron deficiency response pathways. Characterization of the Fiskeby III responses to iron stress and the genes underlying the chromosome 5 QTL provides novel targets for improved abiotic stress tolerance in soybean.


2016 ◽  
Vol 4 (3) ◽  
pp. 162-176 ◽  
Author(s):  
Shabir H. Wani ◽  
Vinay Kumar ◽  
Varsha Shriram ◽  
Saroj Kumar Sah

2009 ◽  
pp. 281-302 ◽  
Author(s):  
Michael Popelka ◽  
Mitchell Tuinstra ◽  
Clifford F. Weil

Author(s):  
A Akram ◽  
K Arshad ◽  
MN Hafeez

Different types of abiotic stresses inhibit the normal growth of plants by changing their physical biochemical, morphological, and molecular traits. It links to the polygenic traits, which is controlled with the help of different genes, due to this polygenetic the manipulation of foreign genetic makeup is very difficult. Drought stress is the very major type of threat to reduce the yield of cash crops in Pakistan and as well as in all over the world. Gene manipulation is the solution to face this problem by producing genetically modified crop plants that have the ability to survive in drought conditions. Universal stress protein gene has been already identified in bacteria which showed its response under stressed conditions, by manipulation of universal stress protein gene. It was found from our study that the bacterial cells transformed with the USP2 gene isolated from cotton induced abiotic stress tolerance under heat, osmotic, and salt stress. It was suggested from our findings that the USP2 gene could be used to produce abiotic stress tolerance transgenic crop plants to enhance crop plant yield and quality.


Sign in / Sign up

Export Citation Format

Share Document