hormone balance
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 29)

H-INDEX

18
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Sweety Nath Barbhuiya ◽  
Dharmeswar Barhoi ◽  
Sarbani Giri

Arsenic is ubiquitously present in the earth’s crust. Population across the world gets exposed to arsenic mainly through drinking water, responsible for causing diseases like hypertension, skin pigmentation, skin lesion, cardiovascular diseases, and even cancer. However, arsenic also disturbs the male and female hormone balance in the body, thus, interfering with the process of spermatogenesis and oogenesis. This eventually leads to infertility in the reproductive system irrespective of gender. Cohort studies have revealed that when pregnant women get exposed to arsenic-contaminated water; it leads to abortion, preterm birth, and stillbirth. Thus, arsenic contamination from any source has a devastating effect on the life of organisms and also on the environment.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1391
Author(s):  
Roberta Paulert ◽  
Roberta Ascrizzi ◽  
Silvia Malatesta ◽  
Paolo Berni ◽  
Miguel Daniel Noseda ◽  
...  

Natural elicitors from macroalgae may affect plant secondary metabolites. Ulvan is a sulfated heteropolysaccharide extracted from green seaweed, acting as both a plant biotic protecting agent, and a plant elicitor, leading to the synthesis of signal molecules. In this work, the aqueous extract of Ulva intestinalis L., mainly composed of ulvan, was used as foliar-spraying treatment and its eliciting effect was investigated in basil (Ocimum basilicum L.) and parsley (Petroselinum crispum L.). Antioxidant metabolites (polyphenols and carotenoids), volatile compounds (both in headspace emissions and hydrodistilled essential oils), and hormones (jasmonic acid, salicylic acid, salicylic acid 2-O-β-D-glucoside, abscisic acid, and azelaic acid) were quantified. The foliar-spraying treatment with U. intestinalis extract increased salicylic acid and its β-glucoside in parsley; in basil, it induced the accumulation of jasmonic and abscisic acids, indicating the presence of a priming effect. In basil, the elicitation caused a change of the essential oil (EO) chemotype from methyl eugenol/eugenol to epi-α-cadinol and increased sesquiterpenes. In parsley EO it caused a significant accumulation of 1,3,8-p-menthatriene, responsible of the typical “parsley-like” smell. In both species, the phenylpropanoids decreased in headspace and EO compositions, while the salicylic acid concentration increased; this could indicate a primarily defensive response to U. intestinalis extract. Due to the evidenced significant biological activity, U. intestinalis extract used as an elicitor may represent a suitable tool to obtain higher amounts of metabolites for optimizing plant flavor metabolites.


2021 ◽  
Author(s):  
Zhilei Liu ◽  
Jinkai Su ◽  
Jingrou Meng ◽  
Jiamei Song ◽  
Haonan Zhang ◽  
...  

Abstract Background and aims Zinc (Zn) can improve rice resistance to abiotic stress and participate in IAA synthesis. The absorption of Zn is closely related to nitrogen (N) nutrition. However, little is known about the mechanisms by which Zn regulates rice low-temperature resistance and tillering recovery after low-temperature under different N levels. Methods Water culture experiment was conducted with two temperatures (22°C and 12°C), two N levels (1.43 mM and 2.86 mM NH4NO3), and three Zn levels (0.08 µM, 0.15 µM and 0.30 µM ZnSO4·7H2O). Results Low-temperature decreased rice tillering, which was further exacerbated at high N levels. Increasing Zn application could improve rice low-temperature resistance under normal N levels, enhance nutrient absorption, improve tiller bud cytokinin (CTK) concentration and CTK/IAA ratio, finally accelerate tillering recovery one week before normal Zn treatment. High N attenuated the contribution of Zn under low temperature, but moderate Zn was beneficial to tillering recovery by regulating the balance of tiller bud IAA and CTK concentration, and IAA transport. Conclusions Increasing Zn application improved rice tolerance to low-temperature stress and promoted tillering recovery, which was aggravated under high N levels. However, appropriate Zn application under high N level was conducive to breaking tiller dormancy and promoting tillering growth spurts when recovering to a normal temperature, which was related to the hormone balance and nutrient absorption synergistic regulation by N and Zn.


Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1839
Author(s):  
Mona Farhadipour ◽  
Inge Depoortere

The global burden of obesity and the challenges of prevention prompted researchers to investigate the mechanisms that control food intake. Food ingestion triggers several physiological responses in the digestive system, including the release of gastrointestinal hormones from enteroendocrine cells that are involved in appetite signalling. Disturbed regulation of gut hormone release may affect energy homeostasis and contribute to obesity. In this review, we summarize the changes that occur in the gut hormone balance during the pre- and postprandial state in obesity and the alterations in the diurnal dynamics of their plasma levels. We further discuss how obesity may affect nutrient sensors on enteroendocrine cells that sense the luminal content and provoke alterations in their secretory profile. Gastric bypass surgery elicits one of the most favorable metabolic outcomes in obese patients. We summarize the effect of different strategies to induce weight loss on gut enteroendocrine function. Although the mechanisms underlying obesity are not fully understood, restoring the gut hormone balance in obesity by targeting nutrient sensors or by combination therapy with gut peptide mimetics represents a novel strategy to ameliorate obesity.


2021 ◽  
Vol 22 (9) ◽  
pp. 4727
Author(s):  
Katja Eubler ◽  
Pia Rantakari ◽  
Heidi Gerke ◽  
Carola Herrmann ◽  
Annika Missel ◽  
...  

The cation channel TRPV2 is known to be expressed by murine macrophages and is crucially involved in their functionality. Macrophages are frequent cells of the mouse testis, an immune-privileged and steroid-producing organ. TRPV2 expression by testicular macrophages and possible changes associated with age or inflammation have not been investigated yet. Therefore, we studied testes of young adult and old wild-type (WT) and AROM+ mice, i.e., transgenic mice overexpressing aromatase. In these animals, inflammatory changes are described in the testis, involving active macrophages, which increase with age. This is associated with impaired spermatogenesis and therefore AROM+ mice are a model for male infertility associated with sterile inflammation. In WT animals, testicular TRPV2 expression was mapped to interstitial CD206+ and peritubular MHC II+ macrophages, with higher levels in CD206+ cells. Expression levels of TRPV2 and most macrophage markers did not increase significantly in old mice, with the exception of CD206. As the number of TRPV2+ testicular macrophages was relatively small, their possible involvement in testicular functions and in aging in WT mice remains to be further studied. In AROM+ testis, TRPV2 was readily detected and levels increased significantly with age, together with macrophage markers and TNF-α. TRPV2 co-localized with F4/80 in macrophages and further studies showed that TRPV2 is mainly expressed by unusual CD206+MHC II+ macrophages, arising in the testis of these animals. Rescue experiments (aromatase inhibitor treatment and crossing with ERαKO mice) restored the testicular phenotype and also abolished the elevated expression of TRPV2, macrophage and inflammation markers. This suggests that TRPV2+ macrophages of the testis are part of an inflammatory cascade initiated by an altered sex hormone balance in AROM+ mice. The changes in testis are distinct from the described alterations in other organs of AROM+, such as prostate and spleen. When we monitored TRPV2 levels in another immune-privileged organ, namely the brain, we found that levels of TRPV2 were not elevated in AROM+ and remained stable during aging. In the adrenal, which similar to the testis produces steroids, we found slight, albeit not significant increases in TRPV2 in both AROM+ and WT mice, which were associated with age. Thus, the changes in the testis are specific for this organ.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zong-Sheng Yuan ◽  
Fang Liu ◽  
Zhen-Yu Liu ◽  
Qiu-Liang Huang ◽  
Guo-Fang Zhang ◽  
...  

AbstractThe plant microbiota play a key role in plant productivity, nutrient uptake, resistance to stress and flowering. The flowering of moso bamboo has been a focus of study. The mechanism of flowering is related to nutrient uptake, temperature, hormone balance and regulation of key genes. However, the connection between microbiota of moso bamboo and its flowering is unknown. In this study, samples of rhizosphere soil, rhizomes, roots and leaves of flowering and nonflowering plants were collected, and 16S rRNA amplicon Illumina sequencing was utilized to separate the bacterial communities associated with different flowering stages of moso bamboo. We identified 5442 OTUs, and the number of rhizosphere soil OTUs was much higher than those of other samples. Principal component analysis (PCA) and hierarchical clustering (Bray Curtis dis) analysis revealed that the bacterial microorganisms related to rhizosphere soil and endophytic tissues of moso bamboo differed significantly from those in bulk soil and rhizobacterial and endosphere microbiomes. In addition, the PCA analyses of root and rhizosphere soil revealed different structures of microbial communities between bamboo that is flowering and not flowering. Through the analysis of core microorganisms, it was found that Flavobacterium, Bacillus and Stenotrophomonas played an important role in the absorption of N elements, which may affect the flowering time of moso bamboo. Our results delineate the complex host-microbe interactions of this plant. We also discuss the potential influence of bacterial microbiome in flowering, which can provide a basis for the development and utilization of moso bamboo.


Author(s):  
Paulius Kamarauskas ◽  
Inga Lukonaitienė ◽  
Aaron T. Scanlan ◽  
Davide Ferioli ◽  
Henrikas Paulauskas ◽  
...  

Purpose: To assess weekly fluctuations in hormonal responses and their relationships with load and well-being during a congested in-season phase in basketball players. Methods: Ten semiprofessional, male basketball players were monitored during 4 congested in-season phase weeks consisting of 3 weekly matches. Salivary hormone variables (testosterone [T], cortisol [C], and T:C ratio) were measured weekly, and external load (PlayerLoad™ and PlayerLoad per minute), internal load session rating of perceived exertion, percentage of maximum heart rate (HR), summated HR zones, and well-being were assessed for each training session and match. Results: Significant (P < .05) moderate to large decreases in T were found in the third and fourth weeks compared with the first week. Nonsignificant moderate to large decreases in C were apparent in the last 2 weeks compared with previous weeks. Summated HR zones and perceived sleep significantly (P < .05) decreased in the fourth week compared with the first week; whereas, percentage of maximum HR significantly (P < .05) decreased in the fourth week compared with the second week. No significant relationships were found between weekly changes in hormonal responses and weekly changes in load and overall wellness. Conclusions: A congested schedule during the in-season negatively impacted the hormonal responses of players, suggesting that T and C measurements may be useful to detect fluctuations in hormone balance in such scenarios. The nonsignificant relationships between weekly changes in hormonal responses and changes in load and well-being indicate that other factors might induce hormonal changes across congested periods in basketball players.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Gracia Zabala ◽  
Anupreet Kour ◽  
Lila O. Vodkin

Abstract Background To elucidate features of seed development, we investigated the transcriptome of a soybean isoline from the germplasm collection that contained an introgressed allele known as minute hilum (mi) which confers a smaller hilum region where the seed attaches to the pod and also results in seed coat cracking surrounding the hilum region. Results RNAs were extracted from immature seed from an extended hilum region (i.e., the hilum and a small ring of tissue surrounding the hilum in which the cracks form) at three different developmental stages:10–25, 25–50 and 50–100 mg seed fresh weight in two independent replicates for each stage. The transcriptomes of these samples from both the Clark isoline containing the mi allele (PI 547628, UC413, iiR t mi G), and its recurrent Clark 63 parent isoline (PI 548532, UC7, iiR T Mi g), which was used for six generations of backcrossing, were compared for differential expression of 88,648 Glyma models of the soybean genome Wm82.a2. The RNA sequence data obtained from the 12 cDNA libraries were subjected to padj value < 0.05 and at least two-fold expression differences to select with confidence genes differentially expressed in the hilum-containing tissue of the seed coat between the two lines. Glyma.09G008400 annotated as encoding an ethylene forming enzyme, ACC oxidase (ACO), was found to be highly overexpressed in the mi hilum region at 165 RPKMs (reads per kilobase per million mapped reads) compared to the standard line at just 0.03 RPKMs. Evidence of changes in expression of genes downstream of the ethylene pathway included those involved in auxin and gibberellin hormone action and extensive differences in expression of cell wall protein genes. These changes are postulated to determine the restricted hilum size and cracking phenotypes. Conclusions We present transcriptome and phenotypic evidence that substantially higher expression of an ethylene-forming ACO gene likely shifts hormone balance and sets in motion downstream changes resulting in a smaller hilum phenotype and the cracks observed in the minute hilum (mi) isoline as compared to its recurrent parent.


Sign in / Sign up

Export Citation Format

Share Document