Supervised Learning of How to Blend Light Transport Simulations

Author(s):  
Hisanari Otsu ◽  
Shinichi Kinuwaki ◽  
Toshiya Hachisuka
2020 ◽  
Vol 2020 (14) ◽  
pp. 357-1-357-6
Author(s):  
Luisa F. Polanía ◽  
Raja Bala ◽  
Ankur Purwar ◽  
Paul Matts ◽  
Martin Maltz

Human skin is made up of two primary chromophores: melanin, the pigment in the epidermis giving skin its color; and hemoglobin, the pigment in the red blood cells of the vascular network within the dermis. The relative concentrations of these chromophores provide a vital indicator for skin health and appearance. We present a technique to automatically estimate chromophore maps from RGB images of human faces captured with mobile devices such as smartphones. The ultimate goal is to provide a diagnostic aid for individuals to monitor and improve the quality of their facial skin. A previous method approaches the problem as one of blind source separation, and applies Independent Component Analysis (ICA) in camera RGB space to estimate the chromophores. We extend this technique in two important ways. First we observe that models for light transport in skin call for source separation to be performed in log spectral reflectance coordinates rather than in RGB. Thus we transform camera RGB to a spectral reflectance space prior to applying ICA. This process involves the use of a linear camera model and Principal Component Analysis to represent skin spectral reflectance as a lowdimensional manifold. The camera model requires knowledge of the incident illuminant, which we obtain via a novel technique that uses the human lip as a calibration object. Second, we address an inherent limitation with ICA that the ordering of the separated signals is random and ambiguous. We incorporate a domain-specific prior model for human chromophore spectra as a constraint in solving ICA. Results on a dataset of mobile camera images show high quality and unambiguous recovery of chromophores.


2018 ◽  
Vol 2018 (15) ◽  
pp. 132-1-1323
Author(s):  
Shijie Zhang ◽  
Zhengtian Song ◽  
G. M. Dilshan P. Godaliyadda ◽  
Dong Hye Ye ◽  
Atanu Sengupta ◽  
...  

Author(s):  
Linna Fan ◽  
Shize Zhang ◽  
Yichao Wu ◽  
Zhiliang Wang ◽  
Chenxin Duan ◽  
...  

2014 ◽  
Vol 6 (2) ◽  
pp. 46-51
Author(s):  
Galang Amanda Dwi P. ◽  
Gregorius Edwadr ◽  
Agus Zainal Arifin

Nowadays, a large number of information can not be reached by the reader because of the misclassification of text-based documents. The misclassified data can also make the readers obtain the wrong information. The method which is proposed by this paper is aiming to classify the documents into the correct group.  Each document will have a membership value in several different classes. The method will be used to find the degree of similarity between the two documents is the semantic similarity. In fact, there is no document that doesn’t have a relationship with the other but their relationship might be close to 0. This method calculates the similarity between two documents by taking into account the level of similarity of words and their synonyms. After all inter-document similarity values obtained, a matrix will be created. The matrix is then used as a semi-supervised factor. The output of this method is the value of the membership of each document, which must be one of the greatest membership value for each document which indicates where the documents are grouped. Classification result computed by the method shows a good value which is 90 %. Index Terms - Fuzzy co-clustering, Heuristic, Semantica Similiarity, Semi-supervised learning.


Sign in / Sign up

Export Citation Format

Share Document