Hyperdiverse Viral Communities in an Oligotrophic Oasis (Cuatro Ciénegas): Marine Affinities and Microgeographic Differentiation

Author(s):  
P. Isa ◽  
B. Taboada ◽  
A. L. Gutiérrez ◽  
P. Chávez ◽  
R. M. del Ángel ◽  
...  
2020 ◽  
Vol 85 ◽  
pp. 183-196
Author(s):  
Y Sun ◽  
J Liu ◽  
Q Yao ◽  
J Jin ◽  
X Liu ◽  
...  

Viruses are the most abundant and ubiquitous biological entities in various ecosystems, yet few investigations of viral communities in wetlands have been performed. To address this data gap, water samples from 6 wetlands were randomly collected across northeast China; viruses in the water were concentrated by sequential tangential flow filtration, and viral communities were assessed through randomly amplified polymorphic DNA-PCR (RAPD-PCR) with 4 decamer oligonucleotide primers. Principal coordinate analysis and hierarchical clustering analysis of the DNA fingerprints showed that viral community compositions differed among the water samples: communities in the 2 coastal wetlands were more similar to each other than to those in the 4 freshwater wetlands. The Shannon-Weaver index (H) and evenness index (E) of the RAPD-PCR fingerprint also differed among the 6 wetlands. Mantel test revealed that the changes in viral communities in wetland water were most closely related to the water NH4+-N and inorganic C content, followed by total K, P, C and NO3--N. DNA sequence analysis of the excised bands revealed that viruses accounted for ~40% of all sequences. Among the hit viral homologs, the majority belonged to the Microviridae. Moreover, variance partitioning analysis showed that the viral community contributed 24.58% while environmental factors explained 30.56% of the bacterial community variation, indicating that the bacterial community composition was strongly affected by both viral community and water variables. This work provides an initial outline of the viral communities from different types of wetlands in northeast China and improves our understanding of the viral diversity in these ecosystems.


2020 ◽  
Vol 19 (1) ◽  
pp. 14
Author(s):  
Gamaliel Castañeda Gaytan ◽  
Ernesto Becerra-López ◽  
Sara Valenzuela-Ceballos ◽  
Miguel Borja-Jiménez ◽  
Bruno Rodríguez-López ◽  
...  

2021 ◽  
Vol 9 (4) ◽  
pp. 760
Author(s):  
Tatyana V. Butina ◽  
Yurij S. Bukin ◽  
Ivan S. Petrushin ◽  
Alexey E. Tupikin ◽  
Marsel R. Kabilov ◽  
...  

Lake Baikal is a unique oligotrophic freshwater lake with unusually cold conditions and amazing biological diversity. Studies of the lake’s viral communities have begun recently, and their full diversity is not elucidated yet. Here, we performed DNA viral metagenomic analysis on integral samples from four different deep-water and shallow stations of the southern and central basins of the lake. There was a strict distinction of viral communities in areas with different environmental conditions. Comparative analysis with other freshwater lakes revealed the highest similarity of Baikal viromes with those of the Asian lakes Soyang and Biwa. Analysis of new data, together with previously published data allowed us to get a deeper insight into the diversity and functional potential of Baikal viruses; however, the true diversity of Baikal viruses in the lake ecosystem remains still unknown. The new metaviromic data will be useful for future studies of viral composition, distribution, and the dynamics associated with global climatic and anthropogenic impacts on this ecosystem.


mSphere ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Anjelique Schulfer ◽  
Tasha M. Santiago-Rodriguez ◽  
Melissa Ly ◽  
Joshua M. Borin ◽  
Jessica Chopyk ◽  
...  

ABSTRACT Alterations in diet can have significant impact on the host, with high-fat diet (HFD) leading to obesity, diabetes, and inflammation of the gut. Although membership and abundances in gut bacterial communities are strongly influenced by diet, substantially less is known about how viral communities respond to dietary changes. Examining fecal contents of mice as the mice were transitioned from normal chow to HFD, we found significant changes in the relative abundances and the diversity in the gut of bacteria and their viruses. Alpha diversity of the bacterial community was significantly diminished in response to the diet change but did not change significantly in the viral community. However, the diet shift significantly impacted the beta diversity in both the bacterial and viral communities. There was a significant shift away from the relatively abundant Siphoviridae accompanied by increases in bacteriophages from the Microviridae family. The proportion of identified bacteriophage structural genes significantly decreased after the transition to HFD, with a conserved loss of integrase genes in all four experimental groups. In total, this study provides evidence for substantial changes in the intestinal virome disproportionate to bacterial changes, and with alterations in putative viral lifestyles related to chromosomal integration as a result of shift to HFD. IMPORTANCE Prior studies have shown that high-fat diet (HFD) can have profound effects on the gastrointestinal (GI) tract microbiome and also demonstrate that bacteria in the GI tract can affect metabolism and lean/obese phenotypes. We investigated whether the composition of viral communities that also inhabit the GI tract are affected by shifts from normal to HFD. We found significant and reproducible shifts in the content of GI tract viromes after the transition to HFD. The differences observed in virome community membership and their associated gene content suggest that these altered viral communities are populated by viruses that are more virulent toward their host bacteria. Because HFD also are associated with significant shifts in GI tract bacterial communities, we believe that the shifts in the viral community may serve to drive the changes that occur in associated bacterial communities.


Astrobiology ◽  
2012 ◽  
Vol 12 (7) ◽  
pp. 659-673 ◽  
Author(s):  
Germán Bonilla-Rosso ◽  
Mariana Peimbert ◽  
Luis David Alcaraz ◽  
Ismael Hernández ◽  
Luis E. Eguiarte ◽  
...  

Author(s):  
Sarah François ◽  
Denis Filloux ◽  
Emmanuel Fernandez ◽  
Mylène Ogliastro ◽  
Philippe Roumagnac

Sign in / Sign up

Export Citation Format

Share Document