viral metagenomics
Recently Published Documents


TOTAL DOCUMENTS

214
(FIVE YEARS 124)

H-INDEX

29
(FIVE YEARS 11)

2022 ◽  
Author(s):  
Elizaveta V. Starikova ◽  
Ksenia M. Klimina ◽  
Anastasia O. Eudokimova ◽  
Ksenia A. Yeruslanova ◽  
Denis A. Gudkov ◽  
...  

The microbial community of the human intestine is important for maintaining human health. It has been reported that the gut microbiome changes with age, and it can be enrichedwith certain beneficial bacteria while also losing certain commensal bacteria.Little is known about the gut virome of long-livers. Our research aimed to extract, sequence and analyze the viral fraction of long-livers’ gut microbiota in comparison with those of young adults and the elderly. We were thereby able to characterize the gut virome profiles and viral diversity of three age groups. Keywords: aging, gut microbiome, viral metagenomics, bacteriophages


2022 ◽  
Vol 17 (1) ◽  
pp. 19-28
Author(s):  
Xinlin Li ◽  
Qi Liu ◽  
Xu Chen ◽  
Yuqing Xiao ◽  
Shixing Yang ◽  
...  

Background: Viral metagenomics, a high-throughput sequencing combined with virus sequence-independent amplification by random PCR, allows for unbiased detection of virtually any viruses present in samples. Materials & methods: In order to investigate the virome of bronchoalveolar lavage fluid from patients with fever of unknown origin, 58 samples collected from diseased patients were characterized and compared. Results: Some representatives of Anelloviridae were identified, we found the torque teno virus (TTV) accounts for the majority of virus communities and were more prevalent in the specimens of febrile patients. Phylogenetic analysis suggested that these anellovirus isolates were close to the previous TTV available in GenBank®. Conclusion: All these data indicate that the human anellovirus species TTV may associated with fever of unknown origin.


2021 ◽  
Vol 102 (12) ◽  
Author(s):  
Caroline Tochetto ◽  
Samuel Paulo Cibulski ◽  
Ana Paula Muterle Varela ◽  
Cristine Cerva ◽  
Diane Alves de Lima ◽  
...  

Over the last decade, viral metagenomics has been established as a non-targeted approach for identifying viruses in stock animals, including pigs. This has led to the identification of a vast diversity of small circular ssDNA viruses. The present study focuses on the investigation of eukaryotic circular Rep-encoding single-stranded (CRESS) DNA viral genomes present in serum of commercially reared pigs from southern Brazil. Several CRESS DNA viral genomes were detected, including representatives of the families Smacoviridae (n=5), Genomoviridae (n=3), Redondoviridae (n=1), Nenyaviridae (n=1) and other yet unclassified genomes (n=9), plus a circular DNA molecule, which probably belongs to the phylum Cressdnaviricota. A novel genus within the family Smacoviridae, tentatively named ‘Suismacovirus’, comprising 21 potential new species, is proposed. Although the reported genomes were recovered from pigs with clinical signs of respiratory disease, further studies should examine their potential role as pathogens. Nonetheless, these findings highlight the diversity of circular ssDNA viruses in serum of domestic pigs, expand the knowledge on CRESS DNA viruses’ genetic diversity and distribution and contribute to the global picture of the virome of commercially reared pigs.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2538
Author(s):  
Alba Folgueiras-González ◽  
Robin van den Braak ◽  
Martin Deijs ◽  
Wikke Kuller ◽  
Steven Sietsma ◽  
...  

A commercial pig farm with no history of porcine circovirus 2 (PCV2) or porcine reproductive and respiratory syndrome virus (PRRSV) repeatedly reported a significant reduction in body weight gain and wasting symptoms in approximately 20–30% of the pigs in the period between three and six weeks after weaning. As standard clinical interventions failed to tackle symptomatology, viral metagenomics were used to describe and monitor the enteric virome at birth, 3 weeks, 4 weeks, 6 weeks, and 9 weeks of age. The latter four sampling points were 7 days, 3 weeks, and 6 weeks post weaning, respectively. Fourteen distinct enteric viruses were identified within the herd, which all have previously been linked to enteric diseases. Here we show that wasting is associated with alterations in the enteric virome of the pigs, characterized by: (1) the presence of enterovirus G at 3 weeks of age, followed by a higher prevalence of the virus in wasting pigs at 6 weeks after weaning; (2) rotaviruses at 3 weeks of age; and (3) porcine sapovirus one week after weaning. However, the data do not provide a causal link between specific viral infections and the postweaning clinical problems on the farm. Together, our results offer evidence that disturbances in the enteric virome at the preweaning stage and early after weaning have a determining role in the development of intestinal barrier dysfunctions and nutrient uptake in the postweaning growth phase. Moreover, we show that the enteric viral load sharply increases in the week after weaning in both healthy and wasting pigs. This study is also the first to report the dynamics and co-infection of porcine rotavirus species and porcine astrovirus genetic lineages during the first 9 weeks of the life of domestic pigs.


2021 ◽  
Vol 9 (12) ◽  
pp. 2602
Author(s):  
Klaudia Chrzastek ◽  
Simona Kraberger ◽  
Kara Schmidlin ◽  
Rafaela S. Fontenele ◽  
Arun Kulkarni ◽  
...  

High-throughput sequencing approaches offer the possibility to better understand the complex microbial communities associated with animals. Viral metagenomics has facilitated the discovery and identification of many known and unknown viruses that inhabit mucosal surfaces of the body and has extended our knowledge related to virus diversity. We used metagenomics sequencing of chicken buccal swab samples and identified various small DNA viruses with circular genome organization. Out of 134 putative circular viral-like circular genome sequences, 70 are cressdnaviruses and 26 are microviruses, whilst the remaining 38 most probably represent sub-genomic molecules. The cressdnaviruses found in this study belong to the Circoviridae, Genomoviridae and Smacoviridae families as well as previously described CRESS1 and naryavirus groups. Among these, genomoviruses and smacoviruses were the most prevalent across the samples. Interestingly, we also identified 26 bacteriophages that belong to the Microviridae family, whose members are known to infect enterobacteria.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2503
Author(s):  
Eric Delwart ◽  
Michael J. Tisza ◽  
Eda Altan ◽  
Yanpeng Li ◽  
Xutao Deng ◽  
...  

While recent changes in treatment have reduced the lethality of idiopathic chronic diarrhea (ICD), this condition remains one of the most common causes of rhesus macaque deaths in non-human primate research centers. We compared the viromes in fecal swabs from 52 animals with late stage ICD and 41 healthy animals. Viral metagenomics targeting virus-like particles was used to identify viruses fecally shed by each animal. Five viruses belonging to the Picornaviridae, one to the Caliciviridae, one to the Parvoviridae, and one to the Adenoviridae families were identified. The fraction of reads matching each viral species was then used to estimate and compare viral loads in ICD cases versus healthy controls. None of the viruses detected in fecal swabs were strongly associated with ICD.


Toxins ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 894
Author(s):  
Dini Hu ◽  
John P. Giesy ◽  
Min Guo ◽  
Wai Kin Ung ◽  
Yijun Kong ◽  
...  

Compositions of microbial communities associated with blooms of algae in a storage reservoir in Macau, China were investigated between 2013 and 2016. Algae were enumerated by visible light microscopy. Profiles of organisms in water were examined by 16S rRNA sequences and viral metagenomics, based on next generation sequencing. Results of 16S rRNA sequencing indicated that majority of the identified organisms were bacteria closely related to Proteobacteria, Cyanobacteria, Verrucomicrobia, Bacteroidetes, and Actinobacteria. Metagenomics sequences demonstrated that the dominant virus was Phycodnavirus, accounting for 70% of the total population. Patterns of relative numbers of bacteria in the microbial community and their temporal changes were determined through alpha diversity indices, principal coordinates analysis (PCoA), relative abundance, and visualized by Venn diagrams. Ways in which the bacterial and viral communities are influenced by various water-related variables were elucidated based on redundancy analysis (RDA). Relationships of the relative numbers of bacteria with trophic status in a reservoir used for drinking water in Macau, provided insight into associations of Phycodnavirus and Proteobacteria with changes in blooms of algae.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Jian Zeng ◽  
Yan Wang ◽  
Ju Zhang ◽  
Shixing Yang ◽  
Wen Zhang

AbstractMembers of the family Inoviridae (inoviruses) are characterized by their unique filamentous morphology and infection cycle. The viral genome of inovirus is able to integrate into the host genome and continuously releases virions without lysing the host, establishing chronic infection. A large number of inoviruses have been obtained from microbial genomes and metagenomes recently, but putative novel inoviruses remaining to be identified. Here, using viral metagenomics, we identified four novel inoviruses from cloacal swab samples of wild and breeding birds. The circular genome of those four inoviruses are 6732 to 7709 nt in length with 51.4% to 56.5% GC content and encodes 9 to 13 open reading frames, respectively. The zonula occludens toxin gene implicated in the virulence of pathogenic host bacteria were identified in all four inoviruses and shared the highest amino acid sequences identity (< 37.3%) to other reference strains belonging to different genera of the family Inoviridae and among themselves. Phylogenetic analysis indicated that all the four inoviruses were genetically far away from other strains belonging to the family Inoviridae and formed an independent clade. According to the genetic distance-based criteria, all the four inoviruses identified in the present study respectively belong to four novel putative genera in the family Inoviridae.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Song-Yi Ning ◽  
Ming-Ming Zhou ◽  
Jie Yang ◽  
Jian Zeng ◽  
Jia-Ping Wang

Abstract Background Rodents are widely distributed and are the natural reservoirs of a diverse group of zoonotic viruses. Thus, analyzing the viral diversity harbored by rodents could assist efforts to predict and reduce the risk of future emergence of zoonotic viral diseases. Rodents are commonly used in animal testing, particularly mice and rats. Experimental rats are important animal models, and a history of pathogenic infections in these animals will directly affect the animal trial results. The pathogenicity of Anellovirus (AV) remains poorly understood due to the lack of a suitable model cell line or animal to support the viral cycle. This study aimed to discover possible anelloviruses from the virome in feces of experimental rats by viral metagenomic technique. Methods Fecal samples were collected from 10 commercial SD rats and pooled into a sample pool and then subjected to libraries construction which was then sequenced on Illumina MiSeq platform. The sequenced reads were analyzed using viral metagenomic analysis pipeline and two novel anelloviruses (AVs) were identified from fecal sample of experimental rats. The prevalence of these two viruses was investigated by conventional PCR. Results The complete genomic sequence of these two AVs were determined and fully characterized, with strain name ratane153-zj1 and ratane153-zj2. The circular genomes of ratane153-zj1 and ratane153-zj2 are 2785 nt and 1930 nt in length, respectively, and both include three ORFs. Ratane153-zj1 closely clustered with members within the genus Wawtorquevirus and formed a separate branch based on the phylogenetic tree constructed over the amino acid sequence of ORF1 of the two AVs identified in this study and other related AVs. While the complete amino acid sequences of ORF1 of ratane153-zj2 (nt 335 to 1390) had the highest sequence identity with an unclassified AV (GenBank No. ATY37438) from Chinchilla lanigera, and they clustered with one AV (GenBank No. QYD02305) belonging to the genus Etatorquevirus from Lynx rufus. Conventional PCR with two sets of specific primers designed based on the two genomes, respectively, showed that they were detectable at a low frequency in cohorts of experimental rats. Conclusion Our study expanded the genome diversity of AVs and provided genetic background information of viruses existed in experimental rats.


Author(s):  
Tatyane de Souza Cardoso Quintão ◽  
Svetoslav Nanev Slavov ◽  
Pâmela Maria de Oliveira ◽  
Rafael dos Santos Bezerra ◽  
Évelin Mota Cassemiro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document