Tool Wear Condition Monitoring Based on Blind Source Separation and Wavelet Transform

Author(s):  
Bazi Rabah ◽  
Tarak Benkedjouh ◽  
Rechak Said
2014 ◽  
Vol 541-542 ◽  
pp. 1419-1423 ◽  
Author(s):  
Min Zhang ◽  
Hong Qi Liu ◽  
Bin Li

Tool condition monitoring is an important issue in the advanced machining process. Existing methods of tool wear monitoring is hardly suitable for mass production of cutting parameters fluctuation. In this paper, a new method for milling tool wear condition monitoring base on tunable Q-factor wavelet transform and Shannon entropy is presented. Spindle motor current signals were recorded during the face milling process. The wavelet energy entropy of the current signals carries information about the change of energy distribution associated with different tool wear conditions. Experiment results showed that the new method could successfully extract significant signature from the spindle-motor current signals to effectively estimate tool wear condition during face milling.


Author(s):  
Peter W. Tse ◽  
Jinyu Zhang

Vibration based machine fault diagnosis is widely adopted in machine condition monitoring. Since a machine is usually composed of many mechanical components, during the machine running, each component will generate its vibration and transmit to other components thru the shaft or linkages. Hence, the vibration signal collected from a sensor is the aggregation of all generated vibrations. To enhance the accuracy in vibration based machine fault diagnosis, the vibration generated by each component must be isolated and identified. In this paper, the performance of blind-source-separation (BSS) in separating various mixed sources is discussed. The BSS based method of second order statistics (SOS) has been applied to separate the aggregated vibration signals generated from a number of mechanical components. To verify the effectiveness of the BSS based SOS, a number of experiments were conducted using both simulated data and vibration generated form the industrial machines. The results show that the BSS possesses the ability to separate both artificially and naturally mixed signals. Such ability is definitely welcome in the fields of condition monitoring and maintenance. Moreover, the paper also discusses the advantages and disadvantages of the algorithm in the applications of machine fault diagnosis and future improvements.


Sign in / Sign up

Export Citation Format

Share Document