Maintaining Case-Based Reasoning Systems: A Machine Learning Approach

Author(s):  
Niloofar Arshadi ◽  
Igor Jurisica
Author(s):  
Eshetie Gizachew Addisu ◽  
◽  
Abiot Sinamo Boltena ◽  
Samson Yohannes Amare

Malaria is life threatening disease in Ethiopia specifically in Tigray region. Having common symptoms with other diseases makes it complex and challenging to diagnose effectively. In this paper case based reasoning framework for malaria diagnosis has been designed to diminish the challenges faced by inexperienced practitioners during malaria diagnosis and to solve the problem on shortage of health professionals. The required knowledge for this study was collected through interview and document analysis from domain experts, malaria patient history cards and other related relevant documents. In the case acquisition process the manual format of cases makes the process too challenging. Decision tree is used to model the acquired knowledge. The case structure was then constructed using the selected most determinant attributes. Machine learning approach is applied to select the most relevant features. Feature-vector case representation technique is applied to represent the collected malaria cases. Jcolibri programming tool integrated with Eclipse and Nearest Neighbor retrieval algorithm are used to design the framework. To the end based on the results we can say that the machine learning approach can be used to select most relevant attributes in diseases having several common symptoms and designing case-based diagnosis frameworks could overcome the main problems observed in health centers of Tigray. As an artifact the framework is evaluated by statistical analysis, comparative evaluation, user evaluation and other evaluation techniques. Averagely 79 % precision, 89 % recall, 91.4% accuracy and 78.8% domain expert’s evaluation was the results scored.


Author(s):  
Vahid Jalali ◽  
David Leake ◽  
Najmeh Forouzandehmehr

The ability of case-based reasoning systems to solve novel problems depends on their capability to adapt past solutions to new circumstances. However, acquiring the knowledge required for case adaptation is a classic challenge for CBR. This motivates the use of machine learning methods to generate adaptation knowledge. A popular approach uses the case difference heuristic (CDH) to generate adaptation rules from pairs of cases in the case base, based on the premise that the observed differences in case solutions result from the differences in the problems they solve, so can form the basic of rules to adapt cases with similar problem differences. Extensive research has successfully applied the CDH approach to adaptation rule learning for case-based regression (numerical prediction) tasks. However, classification tasks have been outside of its scope. The work presented in this paper addresses that gap by extending CDH-based learning of adaptation rules to apply to cases with categorical features and solutions. It presents the generalized case value heuristic to assess case and solution differences and applies it in an ensemble-based case-based classification method, ensembles of adaptations for classification (EAC), built on the authors' previous work on ensembles of adaptations for regression (EAR). Experimental results support the effectiveness of EAC.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1552-P
Author(s):  
KAZUYA FUJIHARA ◽  
MAYUKO H. YAMADA ◽  
YASUHIRO MATSUBAYASHI ◽  
MASAHIKO YAMAMOTO ◽  
TOSHIHIRO IIZUKA ◽  
...  

2020 ◽  
Author(s):  
Clifford A. Brown ◽  
Jonny Dowdall ◽  
Brian Whiteaker ◽  
Lauren McIntyre

2017 ◽  
Author(s):  
Sabrina Jaeger ◽  
Simone Fulle ◽  
Samo Turk

Inspired by natural language processing techniques we here introduce Mol2vec which is an unsupervised machine learning approach to learn vector representations of molecular substructures. Similarly, to the Word2vec models where vectors of closely related words are in close proximity in the vector space, Mol2vec learns vector representations of molecular substructures that are pointing in similar directions for chemically related substructures. Compounds can finally be encoded as vectors by summing up vectors of the individual substructures and, for instance, feed into supervised machine learning approaches to predict compound properties. The underlying substructure vector embeddings are obtained by training an unsupervised machine learning approach on a so-called corpus of compounds that consists of all available chemical matter. The resulting Mol2vec model is pre-trained once, yields dense vector representations and overcomes drawbacks of common compound feature representations such as sparseness and bit collisions. The prediction capabilities are demonstrated on several compound property and bioactivity data sets and compared with results obtained for Morgan fingerprints as reference compound representation. Mol2vec can be easily combined with ProtVec, which employs the same Word2vec concept on protein sequences, resulting in a proteochemometric approach that is alignment independent and can be thus also easily used for proteins with low sequence similarities.


Sign in / Sign up

Export Citation Format

Share Document