Using Load Transformations to Predict the Impact of Packet Fragmentation and Losses on Markovian Arrival Processes

Author(s):  
Stephan Heckmüller ◽  
Bernd E. Wolfinger
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Álvaro Rodríguez-Sanz ◽  
Javier Cano ◽  
Beatriz Rubio Fernández

Purpose Weather events have a significant impact on airport arrival performance and may cause delays in operations and/or constraints in airport capacity. In Europe, almost half of all regulated airport traffic delay is due to adverse weather conditions. Moreover, the closer airports operate to their maximum capacity, the more severe is the impact of a capacity loss due to external events such as weather. Various weather uncertainties occurring during airport operations can significantly delay some arrival processes and cause network-wide effects on the overall air traffic management (ATM) system. Quantifying the impact of weather is, therefore, a key feature to improve the decision-making process that enhances airport performance. It would allow airport operators to identify the relevant weather information needed, and help them decide on the appropriate actions to mitigate the consequences of adverse weather events. Therefore, this research aims to understand and quantify the impact of weather conditions on airport arrival processes, so it can be properly predicted and managed. Design/methodology/approach This study presents a methodology to evaluate the impact of adverse weather events on airport arrival performance (delay and throughput) and to define operational thresholds for significant weather conditions. This study uses a Bayesian Network approach to relate weather data from meteorological reports and airport arrival performance data with scheduled and actual movements, as well as arrival delays. This allows us to understand the relationships between weather phenomena and their impacts on arrival delay and throughput. The proposed model also provides us with the values of the explanatory variables (weather events) that lead to certain operational thresholds in the target variables (arrival delay and throughput). This study then presents a quantification of the airport performance with regard to an aggregated weather-performance metric. Specific weather phenomena are categorized through a synthetic index, which aims to quantify weather conditions at a given airport, based on aviation routine meteorological reports. This helps us to manage uncertainty at airport arrival operations by relating index levels with airport performance results. Findings The results are computed from a data set of over 750,000 flights on a major European hub and from local weather data during the period 2015–2018. This study combines delay and capacity metrics at different airport operational stages for the arrival process (final approach, taxi-in and in-block). Therefore, the spatial boundary of this study is not only the airport but also its surrounding airspace, to take both the arrival sequencing and metering area and potential holding patterns into consideration. Originality/value This study introduces a new approach for modeling causal relationships between airport arrival performance indicators and meteorological events, which can be used to quantify the impact of weather in airport arrival conditions, predict the evolution of airport operational scenarios and support airport decision-making processes.


2016 ◽  
Vol 30 (4) ◽  
pp. 593-621 ◽  
Author(s):  
Beixiang He ◽  
Yunan Liu ◽  
Ward Whitt

Motivated by non-Poisson stochastic variability found in service system arrival data, we extend established service system staffing algorithms using the square-root staffing formula to allow for non-Poisson arrival processes. We develop a general model of the non-Poisson non-stationary arrival process that includes as a special case the non-stationary Cox process (a modification of a Poisson process in which the rate itself is a non-stationary stochastic process), which has been advocated in the literature. We characterize the impact of the non-Poisson stochastic variability upon the staffing through the heavy-traffic limit of the peakedness (ratio of the variance to the mean in an associated stationary infinite-server queueing model), which depends on the arrival process through its central limit theorem behavior. We provide simple formulas to quantify the performance impact of the non-Poisson arrivals upon the staffing decisions, in order to achieve the desired service level. We conduct simulation experiments with non-stationary Markov-modulated Poisson arrival processes with sinusoidal arrival rate functions to demonstrate that the staffing algorithm is effective in stabilizing the time-varying probability of delay at designated targets.


1962 ◽  
Vol 14 ◽  
pp. 415-418
Author(s):  
K. P. Stanyukovich ◽  
V. A. Bronshten

The phenomena accompanying the impact of large meteorites on the surface of the Moon or of the Earth can be examined on the basis of the theory of explosive phenomena if we assume that, instead of an exploding meteorite moving inside the rock, we have an explosive charge (equivalent in energy), situated at a certain distance under the surface.


1962 ◽  
Vol 14 ◽  
pp. 169-257 ◽  
Author(s):  
J. Green

The term geo-sciences has been used here to include the disciplines geology, geophysics and geochemistry. However, in order to apply geophysics and geochemistry effectively one must begin with a geological model. Therefore, the science of geology should be used as the basis for lunar exploration. From an astronomical point of view, a lunar terrain heavily impacted with meteors appears the more reasonable; although from a geological standpoint, volcanism seems the more probable mechanism. A surface liberally marked with volcanic features has been advocated by such geologists as Bülow, Dana, Suess, von Wolff, Shaler, Spurr, and Kuno. In this paper, both the impact and volcanic hypotheses are considered in the application of the geo-sciences to manned lunar exploration. However, more emphasis is placed on the volcanic, or more correctly the defluidization, hypothesis to account for lunar surface features.


1997 ◽  
Vol 161 ◽  
pp. 197-201 ◽  
Author(s):  
Duncan Steel

AbstractWhilst lithopanspermia depends upon massive impacts occurring at a speed above some limit, the intact delivery of organic chemicals or other volatiles to a planet requires the impact speed to be below some other limit such that a significant fraction of that material escapes destruction. Thus the two opposite ends of the impact speed distributions are the regions of interest in the bioastronomical context, whereas much modelling work on impacts delivers, or makes use of, only the mean speed. Here the probability distributions of impact speeds upon Mars are calculated for (i) the orbital distribution of known asteroids; and (ii) the expected distribution of near-parabolic cometary orbits. It is found that cometary impacts are far more likely to eject rocks from Mars (over 99 percent of the cometary impacts are at speeds above 20 km/sec, but at most 5 percent of the asteroidal impacts); paradoxically, the objects impacting at speeds low enough to make organic/volatile survival possible (the asteroids) are those which are depleted in such species.


1997 ◽  
Vol 161 ◽  
pp. 189-195
Author(s):  
Cesare Guaita ◽  
Roberto Crippa ◽  
Federico Manzini

AbstractA large amount of CO has been detected above many SL9/Jupiter impacts. This gas was never detected before the collision. So, in our opinion, CO was released from a parent compound during the collision. We identify this compound as POM (polyoxymethylene), a formaldehyde (HCHO) polymer that, when suddenly heated, reformes monomeric HCHO. At temperatures higher than 1200°K HCHO cannot exist in molecular form and the most probable result of its decomposition is the formation of CO. At lower temperatures, HCHO can react with NH3 and/or HCN to form high UV-absorbing polymeric material. In our opinion, this kind of material has also to be taken in to account to explain the complex evolution of some SL9 impacts that we observed in CCD images taken with a blue filter.


1997 ◽  
Vol 161 ◽  
pp. 179-187
Author(s):  
Clifford N. Matthews ◽  
Rose A. Pesce-Rodriguez ◽  
Shirley A. Liebman

AbstractHydrogen cyanide polymers – heterogeneous solids ranging in color from yellow to orange to brown to black – may be among the organic macromolecules most readily formed within the Solar System. The non-volatile black crust of comet Halley, for example, as well as the extensive orangebrown streaks in the atmosphere of Jupiter, might consist largely of such polymers synthesized from HCN formed by photolysis of methane and ammonia, the color observed depending on the concentration of HCN involved. Laboratory studies of these ubiquitous compounds point to the presence of polyamidine structures synthesized directly from hydrogen cyanide. These would be converted by water to polypeptides which can be further hydrolyzed to α-amino acids. Black polymers and multimers with conjugated ladder structures derived from HCN could also be formed and might well be the source of the many nitrogen heterocycles, adenine included, observed after pyrolysis. The dark brown color arising from the impacts of comet P/Shoemaker-Levy 9 on Jupiter might therefore be mainly caused by the presence of HCN polymers, whether originally present, deposited by the impactor or synthesized directly from HCN. Spectroscopic detection of these predicted macromolecules and their hydrolytic and pyrolytic by-products would strengthen significantly the hypothesis that cyanide polymerization is a preferred pathway for prebiotic and extraterrestrial chemistry.


Sign in / Sign up

Export Citation Format

Share Document