Asymmetric Divisions of Germline Cells

Author(s):  
Pierre Fichelson ◽  
Jean-René Huynh
Cells ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1945
Author(s):  
Sheyla González ◽  
Maximilian Halabi ◽  
David Ju ◽  
Matthew Tsai ◽  
Sophie X. Deng

The Notch signaling pathway plays a key role in proliferation and differentiation. We investigated the effect of Jagged 1 (Jag1)-mediated Notch signaling activation in the human limbal stem/progenitor cell (LSC) population and the stratification of the limbal epithelium in vitro. After Notch signaling activation, there was a reduction in the amount of the stem/progenitor cell population, epithelial stratification, and expression of proliferation markers. There was also an increase of the corneal epithelial differentiation. In the presence of Jag1, asymmetric divisions were decreased, and the expression pattern of the polarity protein Par3, normally present at the apical-lateral membrane of basal cells, was dispersed in the cells. We propose a mechanism in which Notch activation by Jag1 decreases p63 expression at the basal layer, which in turn reduces stratification by decreasing the number of asymmetric divisions and increases differentiation.


2019 ◽  
Vol 116 ◽  
pp. 42-50 ◽  
Author(s):  
Divya Mehta ◽  
Elise S. Pelzer ◽  
Dagmar Bruenig ◽  
Bruce Lawford ◽  
Sarah McLeay ◽  
...  

1994 ◽  
Vol 161 (1) ◽  
pp. 318-320 ◽  
Author(s):  
Grace Wei ◽  
Brian Oliver ◽  
Daniel Pauli ◽  
Anthony P. Mahowald

2008 ◽  
Vol 180 (2) ◽  
pp. 267-272 ◽  
Author(s):  
William Chia ◽  
W. Gregory Somers ◽  
Hongyan Wang

Over the past decade, many of the key components of the genetic machinery that regulate the asymmetric division of Drosophila melanogaster neural progenitors, neuroblasts, have been identified and their functions elucidated. Studies over the past two years have shown that many of these identified components act to regulate the self-renewal versus differentiation decision and appear to function as tumor suppressors during larval nervous system development. In this paper, we highlight the growing number of molecules that are normally considered to be key regulators of cell cycle events/progression that have recently been shown to impinge on the neuroblast asymmetric division machinery to control asymmetric protein localization and/or the decision to self-renew or differentiate.


Development ◽  
1997 ◽  
Vol 124 (13) ◽  
pp. 2645-2657 ◽  
Author(s):  
M. Spielman ◽  
D. Preuss ◽  
F.L. Li ◽  
W.E. Browne ◽  
R.J. Scott ◽  
...  

In flowering plants, male meiosis occurs in the microsporocyte to produce four microspores, each of which develops into a pollen grain. Here we describe four mutant alleles of TETRASPORE (TES), a gene essential for microsporocyte cytokinesis in Arabidopsis thaliana. Following failure of male meiotic cytokinesis in tes mutants, all four microspore nuclei remain within the same cytoplasm, with some completing their developmental programmes to form functional pollen nuclei. Both of the mitotic divisions seen in normal pollen development take place in tes mutants, including the asymmetric division required for the differentiation of gametes; some tes grains perform multiple asymmetric divisions in the same cytoplasm. tes pollen shows a variety of abnormalities subsequent to the cytokinetic defect, including fusion of nuclei, formation of ectopic internal walls, and disruptions to external wall patterning. In addition, ovules fertilized by tes pollen often abort, possibly because of excess paternal genomes in the endosperm. Thus tes mutants not only reveal a gene specific to male meiosis, but aid investigation of a wide range of processes in pollen development and function.


Development ◽  
1999 ◽  
Vol 126 (4) ◽  
pp. 649-658 ◽  
Author(s):  
S.M. Miller ◽  
D.L. Kirk

The gls genes of Volvox are required for the asymmetric divisions that set apart cells of the germ and somatic lineages during embryogenesis. Here we used transposon tagging to clone glsA, and then showed that it is expressed maximally in asymmetrically dividing embryos, and that it encodes a 748-amino acid protein with two potential protein-binding domains. Site-directed mutagenesis of one of these, the J domain (by which Hsp40-class chaperones bind to and activate specific Hsp70 partners) abolishes the capacity of glsA to rescue mutants. Based on this and other considerations, including the fact that the GlsA protein is associated with the mitotic spindle, we discuss how it might function, in conjunction with an Hsp70-type partner, to shift the division plane in asymmetrically dividing cells.


Sign in / Sign up

Export Citation Format

Share Document