asymmetric divisions
Recently Published Documents


TOTAL DOCUMENTS

156
(FIVE YEARS 39)

H-INDEX

34
(FIVE YEARS 4)

2021 ◽  
Vol 22 (23) ◽  
pp. 12871
Author(s):  
Arjun Rajan ◽  
Cyrina M. Ostgaard ◽  
Cheng-Yu Lee

Indirect neurogenesis, during which neural stem cells generate neurons through intermediate progenitors, drives the evolution of lissencephalic brains to gyrencephalic brains. The mechanisms that specify intermediate progenitor identity and that regulate stem cell competency to generate intermediate progenitors remain poorly understood despite their roles in indirect neurogenesis. Well-characterized lineage hierarchy and available powerful genetic tools for manipulating gene functions make fruit fly neural stem cell (neuroblast) lineages an excellent in vivo paradigm for investigating the mechanisms that regulate neurogenesis. Type II neuroblasts in fly larval brains repeatedly undergo asymmetric divisions to generate intermediate neural progenitors (INPs) that undergo limited proliferation to increase the number of neurons generated per stem cell division. Here, we review key regulatory genes and the mechanisms by which they promote the specification and generation of INPs, safeguarding the indirect generation of neurons during fly larval brain neurogenesis. Homologs of these regulators of INPs have been shown to play important roles in regulating brain development in vertebrates. Insight into the precise regulation of intermediate progenitors will likely improve our understanding of the control of indirect neurogenesis during brain development and brain evolution.


2021 ◽  
Author(s):  
Ido Nir ◽  
Gabriel Amador ◽  
Yan Gong ◽  
Nicole K. Smoot ◽  
Le Cai ◽  
...  

2021 ◽  
Author(s):  
Qiong Nan ◽  
Hong Liang ◽  
Janette Mendoza ◽  
Le Liu ◽  
Amit Fulzele ◽  
...  

Asymmetric divisions produce cells with different fates and are critical for development. Here we show that a maize myosin XI protein, OPAQUE1 (O1), is necessary for asymmetric divisions during maize stomatal development. We analyzed stomatal precursor cells prior to and during asymmetric division to determine why o1 mutants have abnormal division planes. Cell polarization and nuclear positioning occur normally in the o1 mutant, and the future site of division is correctly specified. The defect in o1 occurs during late cytokinesis, when the plant-specific phragmoplast - made of microtubules, actin and other proteins - forms the nascent cell plate. The phragmoplast becomes misguided and does not meet the previously established division site. Initial phragmoplast guidance is correct in o1. However, as phragmoplast expansion continues, phragmoplasts in o1 stomatal precursor cells become misguided and do not meet the cortex at the established division site. To understand how this myosin protein contributes to phragmoplast guidance, we identified O1-interacting proteins. Other myosins, specific actin-binding proteins, and maize kinesins related to the Arabidopsis thaliana division site markers PHRAGMOPLAST ORIENTING KINESINs (POKs) interact with O1. We propose that different myosins are important at multiple steps of phragmoplast expansion, and the O1 actin motor and POK-like microtubule motors work together to ensure correct late-stage phragmoplast guidance.


2021 ◽  
Author(s):  
Ido Nir ◽  
Gabriel O Amador ◽  
Yan Gong ◽  
Nicole K Smoot ◽  
Le Cai ◽  
...  

Asymmetric and oriented stem cell divisions enable the continued production of patterned tissues. The molecules that guide these divisions include several polarity proteins that are localized to discrete plasma membrane domains, are differentially inherited during asymmetric divisions, and whose scaffolding activities can guide division plane orientation and subsequent cell fates. In the stomatal lineages on the surfaces of plant leaves, asymmetric and oriented divisions create distinct cell types in physiologically optimized patterns. The polarity protein BASL is a major regulator of stomatal lineage division and cell fate asymmetries in Arabidopsis, but its role in the stomatal lineages of other plants was unclear. Here, using phylogenetic and functional assays, we demonstrate that BASL is a dicot specific polarity protein. Among dicots, divergence in BASLs roles may reflect some intrinsic protein differences, but more likely reflects previously unappreciated differences in how asymmetric cell divisions are employed for pattern formation in different species. This multi-species analysis therefore provides insight into the evolution of a unique polarity regulator and into the developmental choices available to cells as they build and pattern tissues.


Development ◽  
2021 ◽  
Author(s):  
Rebecca Chowdhury ◽  
Yue Wang ◽  
Melissa Campbell ◽  
Susan Goderie ◽  
Francis Doyle ◽  
...  

STAU2 is a double-stranded RNA-binding protein enriched in the nervous system. During asymmetric divisions in the developing mouse cortex, STAU2 preferentially distributes into the intermediate progenitor cell (IPC), delivering RNA molecules that can impact IPC behavior. Corticogenesis occurs on a precise time-schedule, raising the hypothesis that the cargo STAU2 delivers into IPCs changes over time. To test this, we combine RNA-immunoprecipitation with sequencing (RIP-seq) over four stages of mouse cortical development, generating a comprehensive cargo profile for STAU2. A subset of the cargo was ‘stable’, present at all stages, and involved in chromosome organization, macromolecule localization, translation, and DNA repair. Another subset was ‘dynamic’, changing with cortical stage, and involved in neurogenesis, cell projection organization, neurite outgrowth, and included cortical layer markers. Notably, the dynamic STAU2 cargo included determinants of IPC versus neuronal fates and genes contributing to abnormal corticogenesis. Knockdown of one STAU2 target, Taf13, previously linked to microcephaly and impaired myelination, reduced oligodendrogenesis in vitro. We conclude that STAU2 contributes to the timing of corticogenesis by binding and delivering complex and temporally-regulated RNA cargo into IPCs.


Author(s):  
Norman B Best ◽  
Charles Addo-Quaye ◽  
Bong-Suk Kim ◽  
Clifford F Weil ◽  
, Burkhard Schulz ◽  
...  

Abstract The nuclear pore complex (NPC) regulates the movement of macromolecules between the nucleus and cytoplasm. Dysfunction of many components of the NPC results in human genetic diseases, including triple A syndrome (AAAS) as a result of mutations in ALADIN. Here we report a nonsense mutation in the maize ortholog, aladin1 (ali1-1), at the orthologous amino acid residue of an AAAS allele from humans, alters plant stature, tassel architecture, and asymmetric divisions of subsidiary mother cells (SMCs). Crosses with the stronger nonsense allele ali1-2 identified complex allele interactions for plant height and aberrant SMC division. RNA-seq analysis of the ali1-1 mutant identified compensatory transcript accumulation for other NPC components as well as gene expression consequences consistent with conservation of ALADIN1 functions between humans and maize. These findings demonstrate that ALADIN1 is necessary for normal plant development, shoot architecture, and asymmetric cell division in maize.


Science ◽  
2021 ◽  
Vol 372 (6547) ◽  
pp. 1176-1181
Author(s):  
Marco D’Ario ◽  
Rafael Tavares ◽  
Katharina Schiessl ◽  
Bénédicte Desvoyes ◽  
Crisanto Gutierrez ◽  
...  

How eukaryotic cells assess and maintain sizes specific for their species and cell type remains unclear. We show that in the Arabidopsis shoot stem cell niche, cell size variability caused by asymmetric divisions is corrected by adjusting the growth period before DNA synthesis. KIP-related protein 4 (KRP4) inhibits progression to DNA synthesis and associates with mitotic chromosomes. The F BOX-LIKE 17 (FBL17) protein removes excess KRP4. Consequently, daughter cells are born with comparable amounts of KRP4. Inhibitor dilution models predicted that KRP4 inherited through chromatin would robustly regulate size, whereas inheritance of excess free KRP4 would disrupt size homeostasis, as confirmed by mutant analyses. We propose that a cell cycle regulator, stabilized by association with mitotic chromosomes, reads DNA content as a cell size–independent scale.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (5) ◽  
pp. e1009247
Author(s):  
Ben L. Carty ◽  
Anna A. Dattoli ◽  
Elaine M. Dunleavy

Germline stem cells divide asymmetrically to produce one new daughter stem cell and one daughter cell that will subsequently undergo meiosis and differentiate to generate the mature gamete. The silent sister hypothesis proposes that in asymmetric divisions, the selective inheritance of sister chromatids carrying specific epigenetic marks between stem and daughter cells impacts cell fate. To facilitate this selective inheritance, the hypothesis specifically proposes that the centromeric region of each sister chromatid is distinct. In Drosophila germ line stem cells (GSCs), it has recently been shown that the centromeric histone CENP-A (called CID in flies)—the epigenetic determinant of centromere identity—is asymmetrically distributed between sister chromatids. In these cells, CID deposition occurs in G2 phase such that sister chromatids destined to end up in the stem cell harbour more CENP-A, assemble more kinetochore proteins and capture more spindle microtubules. These results suggest a potential mechanism of ‘mitotic drive’ that might bias chromosome segregation. Here we report that the inner kinetochore protein CENP-C, is required for the assembly of CID in G2 phase in GSCs. Moreover, CENP-C is required to maintain a normal asymmetric distribution of CID between stem and daughter cells. In addition, we find that CID is lost from centromeres in aged GSCs and that a reduction in CENP-C accelerates this loss. Finally, we show that CENP-C depletion in GSCs disrupts the balance of stem and daughter cells in the ovary, shifting GSCs toward a self-renewal tendency. Ultimately, we provide evidence that centromere assembly and maintenance via CENP-C is required to sustain asymmetric divisions in female Drosophila GSCs.


2021 ◽  
Author(s):  
Soon-Ki Han ◽  
Jiyuan Yang ◽  
Machiko Arakawa ◽  
Rie Iwasaki ◽  
Tomoaki Sakamoto ◽  
...  

Differentiation of specialized cell types from self-renewing progenitors requires precise cell cycle control. Plant stomata are generated through asymmetric divisions of a stem-cell-like precursor meristemoid followed by the single symmetric division that creates an adjustable pore surrounded by paired guard cells. The stomatal-lineage-specific transcription factor MUTE terminates the asymmetric divisions and triggers differentiation. However, the role of cell cycle machinery in this transition remains unknown. Through time-lapse imaging, we discover that the symmetric division is slower than the asymmetric division. We identify a plant-specific cyclin-dependent kinase inhibitor, SIAMESE-RELATED4 (SMR4), as a molecular brake that decelerates cell cycle during this transition. SMR4 is directly induced by MUTE and transiently accumulates in differentiating meristemoids. SMR4 physically and functionally associates with CYCD3;1 and extends G1-phase of asymmetric divisions. By contrast, SMR4 fails to interact with CYCD5;1, a MUTE-induced G1 cyclin, and permits the symmetric division. Our work unravels a molecular framework of the proliferation-to-differentiation switch within the stomatal lineage and suggests that a timely proliferative cell cycle is critical for the stomatal fate specification.


Development ◽  
2021 ◽  
Vol 148 (7) ◽  
Author(s):  
Flora Crozet ◽  
Christelle Da Silva ◽  
Marie-Hélène Verlhac ◽  
Marie-Emilie Terret

ABSTRACT Off-center spindle positioning in mammalian oocytes enables asymmetric divisions in size, which are important for subsequent embryogenesis. The migration of the meiosis I spindle from the oocyte center to its cortex is mediated by F-actin. Specifically, an F-actin cage surrounds the microtubule spindle and applies forces to it. To better understand how F-actin transmits forces to the spindle, we studied a potential direct link between F-actin and microtubules. For this, we tested the implication of myosin-X, a known F-actin and microtubule binder involved in spindle morphogenesis and/or positioning in somatic cells, amphibian oocytes and embryos. Using a mouse strain conditionally invalidated for myosin-X in oocytes and by live-cell imaging, we show that myosin-X is not localized on the spindle, and is dispensable for spindle and F-actin assembly. It is not required for force transmission as spindle migration and chromosome alignment occur normally. More broadly, myosin-X is dispensable for oocyte developmental potential and female fertility. We therefore exclude a role for myosin-X in transmitting F-actin-mediated forces to the spindle, opening new perspectives regarding this mechanism in mouse oocytes, which differ from most mitotic cells.


Sign in / Sign up

Export Citation Format

Share Document