DR Image and Fractal Correlogram: A New Image Feature Representation Based on Fractal Codes and Its Application to Image Retrieval

Author(s):  
Takanori Yokoyama ◽  
Toshinori Watanabe
2021 ◽  
Vol 32 (4) ◽  
pp. 1-13
Author(s):  
Xia Feng ◽  
Zhiyi Hu ◽  
Caihua Liu ◽  
W. H. Ip ◽  
Huiying Chen

In recent years, deep learning has achieved remarkable results in the text-image retrieval task. However, only global image features are considered, and the vital local information is ignored. This results in a failure to match the text well. Considering that object-level image features can help the matching between text and image, this article proposes a text-image retrieval method that fuses salient image feature representation. Fusion of salient features at the object level can improve the understanding of image semantics and thus improve the performance of text-image retrieval. The experimental results show that the method proposed in the paper is comparable to the latest methods, and the recall rate of some retrieval results is better than the current work.


2019 ◽  
Vol 2019 ◽  
pp. 1-21 ◽  
Author(s):  
Afshan Latif ◽  
Aqsa Rasheed ◽  
Umer Sajid ◽  
Jameel Ahmed ◽  
Nouman Ali ◽  
...  

Multimedia content analysis is applied in different real-world computer vision applications, and digital images constitute a major part of multimedia data. In last few years, the complexity of multimedia contents, especially the images, has grown exponentially, and on daily basis, more than millions of images are uploaded at different archives such as Twitter, Facebook, and Instagram. To search for a relevant image from an archive is a challenging research problem for computer vision research community. Most of the search engines retrieve images on the basis of traditional text-based approaches that rely on captions and metadata. In the last two decades, extensive research is reported for content-based image retrieval (CBIR), image classification, and analysis. In CBIR and image classification-based models, high-level image visuals are represented in the form of feature vectors that consists of numerical values. The research shows that there is a significant gap between image feature representation and human visual understanding. Due to this reason, the research presented in this area is focused to reduce the semantic gap between the image feature representation and human visual understanding. In this paper, we aim to present a comprehensive review of the recent development in the area of CBIR and image representation. We analyzed the main aspects of various image retrieval and image representation models from low-level feature extraction to recent semantic deep-learning approaches. The important concepts and major research studies based on CBIR and image representation are discussed in detail, and future research directions are concluded to inspire further research in this area.


2021 ◽  
Vol 10 (4) ◽  
pp. 249
Author(s):  
Hongwei Zhao ◽  
Jiaxin Wu ◽  
Danyang Zhang ◽  
Pingping Liu

For full description of images’ semantic information, image retrieval tasks are increasingly using deep convolution features trained by neural networks. However, to form a compact feature representation, the obtained convolutional features must be further aggregated in image retrieval. The quality of aggregation affects retrieval performance. In order to obtain better image descriptors for image retrieval, we propose two modules in our method. The first module is named generalized regional maximum activation of convolutions (GR-MAC), which pays more attention to global information at multiple scales. The second module is called saliency joint weighting, which uses nonparametric saliency weighting and channel weighting to focus feature maps more on the salient region without discarding overall information. Finally, we fuse the two modules to obtain more representative image feature descriptors that not only consider the global information of the feature map but also highlight the salient region. We conducted experiments on multiple widely used retrieval data sets such as roxford5k to verify the effectiveness of our method. The experimental results prove that our method is more accurate than the state-of-the-art methods.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Samina Bilquees ◽  
Hassan Dawood ◽  
Hussain Dawood ◽  
Nadeem Majeed ◽  
Ali Javed ◽  
...  

In a world of multimedia information, where users seek accurate results against search query and demand relevant multimedia content retrieval, developing an accurate content-based image retrieval (CBIR) system is difficult due to the presence of noise in the image. The performance of the CBIR system is impaired by this noise. To estimate the distance between the query and database images, CBIR systems use image feature representation. The noise or artifacts present within the visual data might confuse the CBIR when retrieving relevant results. Therefore, we propose Noise Resilient Local Gradient Orientation (NRLGO) feature representation that overcomes the noise factor within the visual information and strengthens the CBIR to retrieve accurate and relevant results. The proposed NRLGO consists of three steps: estimation and removal of noise to protect the local visual structure; extraction of color, texture, and local contrast features; and, at the end, generation of microstructure for visual representation. The Manhattan distance between the query image and the database image is used to measure their similarity. The proposed technique was tested using the Corel dataset, which contains 10000 images from 100 different categories. The outcomes of the experiment signify that the proposed NRLGO has higher retrieval performance in comparison with state-of-the-art techniques.


Information ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 285
Author(s):  
Wenjing Yang ◽  
Liejun Wang ◽  
Shuli Cheng ◽  
Yongming Li ◽  
Anyu Du

Recently, deep learning to hash has extensively been applied to image retrieval, due to its low storage cost and fast query speed. However, there is a defect of insufficiency and imbalance when existing hashing methods utilize the convolutional neural network (CNN) to extract image semantic features and the extracted features do not include contextual information and lack relevance among features. Furthermore, the process of the relaxation hash code can lead to an inevitable quantization error. In order to solve these problems, this paper proposes deep hash with improved dual attention for image retrieval (DHIDA), which chiefly has the following contents: (1) this paper introduces the improved dual attention mechanism (IDA) based on the ResNet18 pre-trained module to extract the feature information of the image, which consists of the position attention module and the channel attention module; (2) when calculating the spatial attention matrix and channel attention matrix, the average value and maximum value of the column of the feature map matrix are integrated in order to promote the feature representation ability and fully leverage the features of each position; and (3) to reduce quantization error, this study designs a new piecewise function to directly guide the discrete binary code. Experiments on CIFAR-10, NUS-WIDE and ImageNet-100 show that the DHIDA algorithm achieves better performance.


Content-Based Image Retrieval (CBIR) is extensively used technique for image retrieval from large image databases. However, users are not satisfied with the conventional image retrieval techniques. In addition, the advent of web development and transmission networks, the number of images available to users continues to increase. Therefore, a permanent and considerable digital image production in many areas takes place. Quick access to the similar images of a given query image from this extensive collection of images pose great challenges and require proficient techniques. From query by image to retrieval of relevant images, CBIR has key phases such as feature extraction, similarity measurement, and retrieval of relevant images. However, extracting the features of the images is one of the important steps. Recently Convolutional Neural Network (CNN) shows good results in the field of computer vision due to the ability of feature extraction from the images. Alex Net is a classical Deep CNN for image feature extraction. We have modified the Alex Net Architecture with a few changes and proposed a novel framework to improve its ability for feature extraction and for similarity measurement. The proposal approach optimizes Alex Net in the aspect of pooling layer. In particular, average pooling is replaced by max-avg pooling and the non-linear activation function Maxout is used after every Convolution layer for better feature extraction. This paper introduces CNN for features extraction from images in CBIR system and also presents Euclidean distance along with the Comprehensive Values for better results. The proposed framework goes beyond image retrieval, including the large-scale database. The performance of the proposed work is evaluated using precision. The proposed work show better results than existing works.


Author(s):  
Jane You ◽  
Qin Li ◽  
Jinghua Wang

This paper presents a new approach to content-based image retrieval by using dynamic indexing and guided search in a hierarchical structure, and extending data mining and data warehousing techniques. The proposed algorithms include a wavelet-based scheme for multiple image feature extraction, the extension of a conventional data warehouse and an image database to an image data warehouse for dynamic image indexing. It also provides an image data schema for hierarchical image representation and dynamic image indexing, a statistically based feature selection scheme to achieve flexible similarity measures, and a feature component code to facilitate query processing and guide the search for the best matching. A series of case studies are reported, which include a wavelet-based image color hierarchy, classification of satellite images, tropical cyclone pattern recognition, and personal identification using multi-level palmprint and face features. Experimental results confirm that the new approach is feasible for content-based image retrieval.


2018 ◽  
Vol 7 (2.24) ◽  
pp. 159
Author(s):  
Durga Prasad K ◽  
Manjunathachari K ◽  
Giri Prasad M.N

This paper focus on Image retrieval using Sketch based image retrieval system. The low complexity model for image representation has given the sketch based image retrieval (SBIR) a optimal selection for next generation application in low resource environment. The SBIR approach uses the geometrical region representation to describe the feature and utilize for recognition. In the SBIR model, the features represented define the image. Towards the improvement of SBIR recognition performance, in this paper a new invariant modeling using “orientation feature transformed modeling” is proposed. The approach gives the enhancement of invariant property and retrieval performance improvement in transformed domain. The experimental results illustrate the significance of invariant orientation feature representation in SBIR over the conventional models.  


Sign in / Sign up

Export Citation Format

Share Document