scholarly journals Toward Improving Image Retrieval via Global Saliency Weighted Feature

2021 ◽  
Vol 10 (4) ◽  
pp. 249
Author(s):  
Hongwei Zhao ◽  
Jiaxin Wu ◽  
Danyang Zhang ◽  
Pingping Liu

For full description of images’ semantic information, image retrieval tasks are increasingly using deep convolution features trained by neural networks. However, to form a compact feature representation, the obtained convolutional features must be further aggregated in image retrieval. The quality of aggregation affects retrieval performance. In order to obtain better image descriptors for image retrieval, we propose two modules in our method. The first module is named generalized regional maximum activation of convolutions (GR-MAC), which pays more attention to global information at multiple scales. The second module is called saliency joint weighting, which uses nonparametric saliency weighting and channel weighting to focus feature maps more on the salient region without discarding overall information. Finally, we fuse the two modules to obtain more representative image feature descriptors that not only consider the global information of the feature map but also highlight the salient region. We conducted experiments on multiple widely used retrieval data sets such as roxford5k to verify the effectiveness of our method. The experimental results prove that our method is more accurate than the state-of-the-art methods.

2021 ◽  
Vol 32 (4) ◽  
pp. 1-13
Author(s):  
Xia Feng ◽  
Zhiyi Hu ◽  
Caihua Liu ◽  
W. H. Ip ◽  
Huiying Chen

In recent years, deep learning has achieved remarkable results in the text-image retrieval task. However, only global image features are considered, and the vital local information is ignored. This results in a failure to match the text well. Considering that object-level image features can help the matching between text and image, this article proposes a text-image retrieval method that fuses salient image feature representation. Fusion of salient features at the object level can improve the understanding of image semantics and thus improve the performance of text-image retrieval. The experimental results show that the method proposed in the paper is comparable to the latest methods, and the recall rate of some retrieval results is better than the current work.


2019 ◽  
Vol 2019 ◽  
pp. 1-21 ◽  
Author(s):  
Afshan Latif ◽  
Aqsa Rasheed ◽  
Umer Sajid ◽  
Jameel Ahmed ◽  
Nouman Ali ◽  
...  

Multimedia content analysis is applied in different real-world computer vision applications, and digital images constitute a major part of multimedia data. In last few years, the complexity of multimedia contents, especially the images, has grown exponentially, and on daily basis, more than millions of images are uploaded at different archives such as Twitter, Facebook, and Instagram. To search for a relevant image from an archive is a challenging research problem for computer vision research community. Most of the search engines retrieve images on the basis of traditional text-based approaches that rely on captions and metadata. In the last two decades, extensive research is reported for content-based image retrieval (CBIR), image classification, and analysis. In CBIR and image classification-based models, high-level image visuals are represented in the form of feature vectors that consists of numerical values. The research shows that there is a significant gap between image feature representation and human visual understanding. Due to this reason, the research presented in this area is focused to reduce the semantic gap between the image feature representation and human visual understanding. In this paper, we aim to present a comprehensive review of the recent development in the area of CBIR and image representation. We analyzed the main aspects of various image retrieval and image representation models from low-level feature extraction to recent semantic deep-learning approaches. The important concepts and major research studies based on CBIR and image representation are discussed in detail, and future research directions are concluded to inspire further research in this area.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Samina Bilquees ◽  
Hassan Dawood ◽  
Hussain Dawood ◽  
Nadeem Majeed ◽  
Ali Javed ◽  
...  

In a world of multimedia information, where users seek accurate results against search query and demand relevant multimedia content retrieval, developing an accurate content-based image retrieval (CBIR) system is difficult due to the presence of noise in the image. The performance of the CBIR system is impaired by this noise. To estimate the distance between the query and database images, CBIR systems use image feature representation. The noise or artifacts present within the visual data might confuse the CBIR when retrieving relevant results. Therefore, we propose Noise Resilient Local Gradient Orientation (NRLGO) feature representation that overcomes the noise factor within the visual information and strengthens the CBIR to retrieve accurate and relevant results. The proposed NRLGO consists of three steps: estimation and removal of noise to protect the local visual structure; extraction of color, texture, and local contrast features; and, at the end, generation of microstructure for visual representation. The Manhattan distance between the query image and the database image is used to measure their similarity. The proposed technique was tested using the Corel dataset, which contains 10000 images from 100 different categories. The outcomes of the experiment signify that the proposed NRLGO has higher retrieval performance in comparison with state-of-the-art techniques.


Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 419
Author(s):  
Zhenbing Zhao ◽  
Hongyu Qi ◽  
Xiaoqing Fan ◽  
Guozhi Xu ◽  
Yincheng Qi ◽  
...  

Deep convolutional neural networks (DCNNs) with alternating convolutional, pooling and decimation layers are widely used in computer vision, yet current works tend to focus on deeper networks with many layers and neurons, resulting in a high computational complexity. However, the recognition task is still challenging for insufficient and uncomprehensive object appearance and training sample types such as infrared insulators. In view of this, more attention is focused on the application of a pretrained network for image feature representation, but the rules on how to select the feature representation layer are scarce. In this paper, we proposed a new concept, the layer entropy and relative layer entropy, which can be referred to as an image representation method based on relative layer entropy (IRM_RLE). It was designed to excavate the most suitable convolution layer for image recognition. First, the image was fed into an ImageNet pretrained DCNN model, and deep convolutional activations were extracted. Then, the appropriate feature layer was selected by calculating the layer entropy and relative layer entropy of each convolution layer. Finally, the number of the feature map was selected according to the importance degree and the feature maps of the convolution layer, which were vectorized and pooled by VLAD (vector of locally aggregated descriptors) coding and quantifying for final image representation. The experimental results show that the proposed approach performs competitively against previous methods across all datasets. Furthermore, for the indoor scenes and actions datasets, the proposed approach outperforms the state-of-the-art methods.


Author(s):  
Tianshui Chen ◽  
Liang Lin ◽  
Riquan Chen ◽  
Yang Wu ◽  
Xiaonan Luo

Humans can naturally understand an image in depth with the aid of rich knowledge accumulated from daily lives or professions. For example, to achieve fine-grained image recognition (e.g., categorizing hundreds of subordinate categories of birds) usually requires a comprehensive visual concept organization including category labels and part-level attributes. In this work, we investigate how to unify rich professional knowledge with deep neural network architectures and propose a Knowledge-Embedded Representation Learning (KERL) framework for handling the problem of fine-grained image recognition. Specifically, we organize the rich visual concepts in the form of knowledge graph and employ a Gated Graph Neural Network to propagate node message through the graph for generating the knowledge representation. By introducing a novel gated mechanism, our KERL framework incorporates this knowledge representation into the discriminative image feature learning, i.e., implicitly associating the specific attributes with the feature maps. Compared with existing methods of fine-grained image classification, our KERL framework has several appealing properties: i) The embedded high-level knowledge enhances the feature representation, thus facilitating distinguishing the subtle differences among subordinate categories. ii) Our framework can learn feature maps with a meaningful configuration that the highlighted regions finely accord with the nodes (specific attributes) of the knowledge graph. Extensive experiments on the widely used Caltech-UCSD bird dataset demonstrate the superiority of our KERL framework over existing state-of-the-art methods.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5312
Author(s):  
Yanni Zhang ◽  
Yiming Liu ◽  
Qiang Li ◽  
Jianzhong Wang ◽  
Miao Qi ◽  
...  

Recently, deep learning-based image deblurring and deraining have been well developed. However, most of these methods fail to distill the useful features. What is more, exploiting the detailed image features in a deep learning framework always requires a mass of parameters, which inevitably makes the network suffer from a high computational burden. We propose a lightweight fusion distillation network (LFDN) for image deblurring and deraining to solve the above problems. The proposed LFDN is designed as an encoder–decoder architecture. In the encoding stage, the image feature is reduced to various small-scale spaces for multi-scale information extraction and fusion without much information loss. Then, a feature distillation normalization block is designed at the beginning of the decoding stage, which enables the network to distill and screen valuable channel information of feature maps continuously. Besides, an information fusion strategy between distillation modules and feature channels is also carried out by the attention mechanism. By fusing different information in the proposed approach, our network can achieve state-of-the-art image deblurring and deraining results with a smaller number of parameters and outperform the existing methods in model complexity.


Author(s):  
Cong Gao ◽  
Ping Yang ◽  
Yanping Chen ◽  
Zhongmin Wang ◽  
Yue Wang

AbstractWith large deployment of wireless sensor networks, anomaly detection for sensor data is becoming increasingly important in various fields. As a vital data form of sensor data, time series has three main types of anomaly: point anomaly, pattern anomaly, and sequence anomaly. In production environments, the analysis of pattern anomaly is the most rewarding one. However, the traditional processing model cloud computing is crippled in front of large amount of widely distributed data. This paper presents an edge-cloud collaboration architecture for pattern anomaly detection of time series. A task migration algorithm is developed to alleviate the problem of backlogged detection tasks at edge node. Besides, the detection tasks related to long-term correlation and short-term correlation in time series are allocated to cloud and edge node, respectively. A multi-dimensional feature representation scheme is devised to conduct efficient dimension reduction. Two key components of the feature representation trend identification and feature point extraction are elaborated. Based on the result of feature representation, pattern anomaly detection is performed with an improved kernel density estimation method. Finally, extensive experiments are conducted with synthetic data sets and real-world data sets.


Information ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 285
Author(s):  
Wenjing Yang ◽  
Liejun Wang ◽  
Shuli Cheng ◽  
Yongming Li ◽  
Anyu Du

Recently, deep learning to hash has extensively been applied to image retrieval, due to its low storage cost and fast query speed. However, there is a defect of insufficiency and imbalance when existing hashing methods utilize the convolutional neural network (CNN) to extract image semantic features and the extracted features do not include contextual information and lack relevance among features. Furthermore, the process of the relaxation hash code can lead to an inevitable quantization error. In order to solve these problems, this paper proposes deep hash with improved dual attention for image retrieval (DHIDA), which chiefly has the following contents: (1) this paper introduces the improved dual attention mechanism (IDA) based on the ResNet18 pre-trained module to extract the feature information of the image, which consists of the position attention module and the channel attention module; (2) when calculating the spatial attention matrix and channel attention matrix, the average value and maximum value of the column of the feature map matrix are integrated in order to promote the feature representation ability and fully leverage the features of each position; and (3) to reduce quantization error, this study designs a new piecewise function to directly guide the discrete binary code. Experiments on CIFAR-10, NUS-WIDE and ImageNet-100 show that the DHIDA algorithm achieves better performance.


Sign in / Sign up

Export Citation Format

Share Document