Parameter Estimation Using the Genetic Algorithm in Terms of Quantitative Precipitation Forecast

Author(s):  
Yong Hee Lee ◽  
Seon Ki Park ◽  
Dong-Eon Chang ◽  
Jong-Chul Ha ◽  
Hee-Sang Lee
2021 ◽  
Vol 14 (10) ◽  
pp. 6241-6255
Author(s):  
Sojung Park ◽  
Seon K. Park

Abstract. One of the biggest uncertainties in numerical weather predictions (NWPs) comes from treating the subgrid-scale physical processes. For more accurate regional weather and climate prediction by improving physics parameterizations, it is important to optimize a combination of physics schemes and unknown parameters in NWP models. We have developed an interface system between a micro-genetic algorithm (µ-GA) and the WRF model for the combinatorial optimization of cumulus (CU), microphysics (MP), and planetary boundary layer (PBL) schemes in terms of quantitative precipitation forecast for heavy rainfall events in Korea. The µ-GA successfully improved simulated precipitation despite the nonlinear relationship among the physics schemes. During the evolution process, MP schemes control grid-resolving-scale precipitation, while CU and PBL schemes determine subgrid-scale precipitation. This study demonstrates that the combinatorial optimization of physics schemes in the WRF model is one possible solution to enhance the forecast skill of precipitation.


2021 ◽  
Author(s):  
Sojung Park ◽  
Seon K. Park

Abstract. One of biggest uncertainties in Numerical Weather Predictions (NWPs) comes from treating the subgrid-scale physical processes. For the more accurate regional weather/climate prediction by improving physics parameterizations, it is important to optimize a combination of physics schemes as well as unknown parameters in NWP models. We have developed an interface system between micro-Genetic Algorithm (μ-GA) and the WRF model for the combinatorial optimization of CUmulus (CU), MicroPhysics (MP), and Planetary Boundary Layer (PBL) schemes in terms of quantitative precipitation forecast for heavy rainfall events in Korea. The μ-GA successfully improved simulated precipitation despite the non-linear relationship among the physics schemes. During the evolution process, MP schemes control grid-resolving scale precipitation while CU and PBL schemes determine subgrid-scale precipitation. This study has demonstrated the combinatorial optimization of physics schemes in the WRF model is one of possible solutions to enhance the forecast skill of precipitation.


Atmosphere ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 111 ◽  
Author(s):  
Chul-Min Ko ◽  
Yeong Yun Jeong ◽  
Young-Mi Lee ◽  
Byung-Sik Kim

This study aimed to enhance the accuracy of extreme rainfall forecast, using a machine learning technique for forecasting hydrological impact. In this study, machine learning with XGBoost technique was applied for correcting the quantitative precipitation forecast (QPF) provided by the Korea Meteorological Administration (KMA) to develop a hydrological quantitative precipitation forecast (HQPF) for flood inundation modeling. The performance of machine learning techniques for HQPF production was evaluated with a focus on two cases: one for heavy rainfall events in Seoul and the other for heavy rainfall accompanied by Typhoon Kong-rey (1825). This study calculated the well-known statistical metrics to compare the error derived from QPF-based rainfall and HQPF-based rainfall against the observational data from the four sites. For the heavy rainfall case in Seoul, the mean absolute errors (MAE) of the four sites, i.e., Nowon, Jungnang, Dobong, and Gangnam, were 18.6 mm/3 h, 19.4 mm/3 h, 48.7 mm/3 h, and 19.1 mm/3 h for QPF and 13.6 mm/3 h, 14.2 mm/3 h, 33.3 mm/3 h, and 12.0 mm/3 h for HQPF, respectively. These results clearly indicate that the machine learning technique is able to improve the forecasting performance for localized rainfall. In addition, the HQPF-based rainfall shows better performance in capturing the peak rainfall amount and spatial pattern. Therefore, it is considered that the HQPF can be helpful to improve the accuracy of intense rainfall forecast, which is subsequently beneficial for forecasting floods and their hydrological impacts.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
An Liu ◽  
Erwie Zahara ◽  
Ming-Ta Yang

Ordinary differential equations usefully describe the behavior of a wide range of dynamic physical systems. The particle swarm optimization (PSO) method has been considered an effective tool for solving the engineering optimization problems for ordinary differential equations. This paper proposes a modified hybrid Nelder-Mead simplex search and particle swarm optimization (M-NM-PSO) method for solving parameter estimation problems. The M-NM-PSO method improves the efficiency of the PSO method and the conventional NM-PSO method by rapid convergence and better objective function value. Studies are made for three well-known cases, and the solutions of the M-NM-PSO method are compared with those by other methods published in the literature. The results demonstrate that the proposed M-NM-PSO method yields better estimation results than those obtained by the genetic algorithm, the modified genetic algorithm (real-coded GA (RCGA)), the conventional particle swarm optimization (PSO) method, and the conventional NM-PSO method.


Sign in / Sign up

Export Citation Format

Share Document