Tableaux with Dynamic Filtration for Layered Modal Logics

Author(s):  
Olivier Gasquet ◽  
Bilal Said
2010 ◽  
Vol 20 (3) ◽  
pp. 279-304 ◽  
Author(s):  
Serge P Odintsov ◽  
Heinrich Wansing
Keyword(s):  

2019 ◽  
Vol 170 (5) ◽  
pp. 558-577
Author(s):  
Guram Bezhanishvili ◽  
Nick Bezhanishvili ◽  
Joel Lucero-Bryan ◽  
Jan van Mill

Studia Logica ◽  
1983 ◽  
Vol 42 (1) ◽  
pp. 63-80 ◽  
Author(s):  
V. B. Shehtman
Keyword(s):  

2010 ◽  
Vol 56 (1) ◽  
pp. 89-102 ◽  
Author(s):  
Alfredo Burrieza ◽  
Inmaculada P. de Guzmán ◽  
Emilio Muñoz-Velasco

2016 ◽  
Vol 68 (1) ◽  
pp. 45-51
Author(s):  
Guangying Ma ◽  
Shurong Ning ◽  
Yunlong Hu ◽  
jun Gao

Purpose – The aim of this study is to establish a dynamic model of the filtration ratio. For the problem that the measured value of the filtration ratio is far less than the theoretical value in the actual hydraulic filtering system, the paper aims to find the relationship between the filtration ratio and the parameters of the hydraulic systems, such as the contamination level and the dirt-holding quantity of the filter. Design/methodology/approach – The paper opted for the method of experimental analysis and simulation to determine the relationship between the filtration ratio and the parameters of the hydraulic system, and established a dynamic filtration ratio model. Findings – The paper provides a preliminary model of dynamic filtration ratio, and the model shows that the filtration ratio is exponentially related to the contamination level and the dirt-holding quantity. Different filters have different influence coefficients. The filtering capacity for a certain particle size and the contamination level control of the filter for different hydraulic systems can be judged according to the dynamic balance equation of hydraulic systems. Originality/value – The paper is useful in the selection of filters and in the precise control of the contamination level of the hydraulic system.


1992 ◽  
Vol 16 (3-4) ◽  
pp. 231-262
Author(s):  
Philippe Balbiani

The beauty of modal logics and their interest lie in their ability to represent such different intensional concepts as knowledge, time, obligation, provability in arithmetic, … according to the properties satisfied by the accessibility relations of their Kripke models (transitivity, reflexivity, symmetry, well-foundedness, …). The purpose of this paper is to study the ability of modal logics to represent the concepts of provability and unprovability in logic programming. The use of modal logic to study the semantics of logic programming with negation is defended with the help of a modal completion formula. This formula is a modal translation of Clack’s formula. It gives soundness and completeness proofs for the negation as failure rule. It offers a formal characterization of unprovability in logic programs. It characterizes as well its stratified semantics.


2022 ◽  
Vol 933 ◽  
Author(s):  
Rouae Ben Dhia ◽  
Nils Tilton ◽  
Denis Martinand

We use linear stability analysis and direct numerical simulations to investigate the coupling between centrifugal instabilities, solute transport and osmotic pressure in a Taylor–Couette configuration that models rotating dynamic filtration devices. The geometry consists of a Taylor–Couette cell with a superimposed radial throughflow of solvent across two semi-permeable cylinders. Both cylinders totally reject the solute, inducing the build-up of a concentration boundary layer. The solute retroacts on the velocity field via the osmotic pressure associated with the concentration differences across the semi-permeable cylinders. Our results show that the presence of osmotic pressure strongly alters the dynamics of the centrifugal instabilities and substantially reduces the critical conditions above which Taylor vortices are observed. It is also found that this enhancement of the hydrodynamic instabilities eventually plateaus as the osmotic pressure is further increased. We propose a mechanism to explain how osmosis and instabilities cooperate and develop an analytical criterion to bound the parameter range for which osmosis fosters the hydrodynamic instabilities.


Sign in / Sign up

Export Citation Format

Share Document