scholarly journals Semi-supervised Learning with Multilayer Perceptron for Detecting Changes of Remote Sensing Images

Author(s):  
Swarnajyoti Patra ◽  
Susmita Ghosh ◽  
Ashish Ghosh
2020 ◽  
Vol 12 (21) ◽  
pp. 3603 ◽  
Author(s):  
Jiaxin Wang ◽  
Chris H. Q. Ding ◽  
Sibao Chen ◽  
Chenggang He ◽  
Bin Luo

Image segmentation has made great progress in recent years, but the annotation required for image segmentation is usually expensive, especially for remote sensing images. To solve this problem, we explore semi-supervised learning methods and appropriately utilize a large amount of unlabeled data to improve the performance of remote sensing image segmentation. This paper proposes a method for remote sensing image segmentation based on semi-supervised learning. We first design a Consistency Regularization (CR) training method for semi-supervised training, then employ the new learned model for Average Update of Pseudo-label (AUP), and finally combine pseudo labels and strong labels to train semantic segmentation network. We demonstrate the effectiveness of the proposed method on three remote sensing datasets, achieving better performance without more labeled data. Extensive experiments show that our semi-supervised method can learn the latent information from the unlabeled data to improve the segmentation performance.


Author(s):  
FARID MELGANI

A fuzzy-logic approach to the classification of multitemporal, multisensor remote-sensing images is proposed. The approach is based on a fuzzy fusion of three basic sources of information: spectral, spatial and temporal contextual information sources. It aims at improving the accuracy over that of single-time noncontextual classification. Single-time class posterior probabilities, which are used to represent spectral information, are estimated by Multilayer Perceptron neural networks trained for each single-time image, thus making the approach applicable to multisensor data. Both the spatial and temporal kinds of contextual information are derived from the single-time classification maps obtained by the neural networks. The expert's knowledge of possible transitions between classes at two different times is exploited to extract temporal contextual information. The three kinds of information are then fuzzified in order to apply a fuzzy reasoning rule for their fusion. Fuzzy reasoning is based on the "MAX" fuzzy operator and on information about class prior probabilities. Finally, the class with the largest fuzzy output value is selected for each pixel in order to provide the final classification map. Experimental results on a multitemporal data set consisting of two multisensor (Landsat TM and ERS-1 SAR) images are reported. The accuracy of the proposed fuzzy spatio-temporal contextual classifier is compared with those obtained by the Multilayer Perceptron neural networks and a reference classification approach based on Markov Random Fields (MRFs). Results show the benefit of adding spatio-temporal contextual information to the classification scheme, and suggest that the proposed approach represents an interesting alternative to the MRF-based approach, in particular, in terms of simplicity.


2020 ◽  
Vol 12 (20) ◽  
pp. 3276 ◽  
Author(s):  
Zhicheng Zhao ◽  
Ze Luo ◽  
Jian Li ◽  
Can Chen ◽  
Yingchao Piao

In recent years, the development of convolutional neural networks (CNNs) has promoted continuous progress in scene classification of remote sensing images. Compared with natural image datasets, however, the acquisition of remote sensing scene images is more difficult, and consequently the scale of remote sensing image datasets is generally small. In addition, many problems related to small objects and complex backgrounds arise in remote sensing image scenes, presenting great challenges for CNN-based recognition methods. In this article, to improve the feature extraction ability and generalization ability of such models and to enable better use of the information contained in the original remote sensing images, we introduce a multitask learning framework which combines the tasks of self-supervised learning and scene classification. Unlike previous multitask methods, we adopt a new mixup loss strategy to combine the two tasks with dynamic weight. The proposed multitask learning framework empowers a deep neural network to learn more discriminative features without increasing the amounts of parameters. Comprehensive experiments were conducted on four representative remote sensing scene classification datasets. We achieved state-of-the-art performance, with average accuracies of 94.21%, 96.89%, 99.11%, and 98.98% on the NWPU, AID, UC Merced, and WHU-RS19 datasets, respectively. The experimental results and visualizations show that our proposed method can learn more discriminative features and simultaneously encode orientation information while effectively improving the accuracy of remote sensing scene classification.


2015 ◽  
Vol 12 (4) ◽  
pp. 701-705 ◽  
Author(s):  
Dingwen Zhang ◽  
Junwei Han ◽  
Gong Cheng ◽  
Zhenbao Liu ◽  
Shuhui Bu ◽  
...  

2020 ◽  
Vol 12 (6) ◽  
pp. 1012 ◽  
Author(s):  
Cheng Shi ◽  
Zhiyong Lv ◽  
Xiuhong Yang ◽  
Pengfei Xu ◽  
Irfana Bibi

Traditional classification methods used for very high-resolution (VHR) remote sensing images require a large number of labeled samples to obtain higher classification accuracy. Labeled samples are difficult to obtain and costly. Therefore, semi-supervised learning becomes an effective paradigm that combines the labeled and unlabeled samples for classification. In semi-supervised learning, the key issue is to enlarge the training set by selecting highly-reliable unlabeled samples. Observing the samples from multiple views is helpful to improving the accuracy of label prediction for unlabeled samples. Hence, the reasonable view partition is very important for improving the classification performance. In this paper, a hierarchical multi-view semi-supervised learning framework with CNNs (HMVSSL) is proposed for VHR remote sensing image classification. Firstly, a superpixel-based sample enlargement method is proposed to increase the number of training samples in each view. Secondly, a view partition method is designed to partition the training set into two independent views, and the partitioned subsets are characterized by being inter-distinctive and intra-compact. Finally, a collaborative classification strategy is proposed for the final classification. Experiments are conducted on three VHR remote sensing images, and the results show that the proposed method performs better than several state-of-the-art methods.


Sign in / Sign up

Export Citation Format

Share Document