Parameter Estimation in Closed-Loop

2010 ◽  
pp. 353-366
Author(s):  
Rolf Isermann ◽  
Marco Münchhof
2019 ◽  
Vol 35 (4) ◽  
pp. 505-529
Author(s):  
Kalpana Dharmalingam ◽  
Thyagarajan Thangavelu

Abstract In process industries, closed-loop step and closed-loop relay feedback tests are popularly used for estimating model parameters. In this paper, different methods available in the literature for parameter estimation using conventional techniques and techniques based on relay feedback test are surveyed by reviewing around 152 research articles published during the past three decades. Through a comprehensive survey of available literature, the parameter estimation methods are classified into two broad groups, namely conventional techniques and relay-based parametric estimation techniques. These relay-based techniques are further classified into two subgroups, namely single-input-single-output (SISO) systems and multi-input-multi-output systems (both square and nonsquare), and are revealed in a lucid manner with the help of benchmark examples and case studies. For the above categorized methods, the procedural steps involved in relay-based parametric estimation methods are also presented. To facilitate the readers, comparison tables are included to comprehend the results of different parametric estimation techniques available in the literature. The incorporation of quantitative and qualitative analysis of papers published in various journals in the above area with the help of pie charts and graphs would enable the readers to grasp the overview of the research activity being carried out in the relay feedback domain. At the end, the challenging issues in relay-based parametric estimation methods and the directions for future investigations that can be explored are also highlighted.


2021 ◽  
Vol 11 (16) ◽  
pp. 7761
Author(s):  
Xiaoyu Zhang ◽  
Mizraim Martinez-Lopez ◽  
Wei He ◽  
Yukai Shang ◽  
Chen Jiang ◽  
...  

The full-information state feedback controller is usually used for regulating the output voltage of converters. Sufficient sensors should be adopted to measure all of the states. However, the extensive use of current sensors not only increases the cost of the overall system, but also affects the reliability. In this paper, the sensorless control problem of DC–DC boost converters is addressed to avoid the need for the current sensor. First, a PI passivity-based control (PI-PBC) is proposed to stabilize this converter. The main feature of this design is that the exponential convergence of the system is guaranteed. Afterward, a generalized parameter estimation-based observer (GPEBO) is presented to estimate the inductor current with the finite-time convergence (FTC). By adding this estimate in the above PI-PBC, a sensorless controller is developed. Thanks to this FTC, the exponential convergence of an overall closed-loop system is ensured. Finally, the simulation and experimental results are given to assess the performance of the proposed controller.


2016 ◽  
Vol 8 (5) ◽  
pp. 540-547
Author(s):  
Tomas Eglynas ◽  
Audrius Senulis ◽  
Marijonas Bogdevičius ◽  
Arūnas Andziulis ◽  
Mindaugas Jusis

The main control object of Quay crane, which is operating in seaport intermodal terminal cargo loading and unloading process, is the crane trolley. One of the main frequent problem, which occurs, is the swinging of the container. This swinging is caused not only by external forces but also by the movement of the trolley. The research results of recent years produced various types of control algorithms by the other researchers. The control algorithms are solving separate control problems of Quay crane in laboratory environment. However, there is still complex control algorithm design and the controller’s parameter estimation problems to be solved. This paper presents mathematical model of the Quay crane trolley mechanism with the suspended cargo. The mathematical model is implemented in Matlab Simulink environment and using Dormand-Prince solving method. The presented model of laboratory quay crane mathematical model is dedicated to parameter estimation of PID controller of closed loop system with the usage of S –form speed input profile. The article includes the dynamic model of the presented system, the description of closed loop system and modeling results. These results will be used as an initial information for the PID parameters estimation in real quay crane control system. The simu-lation of the model was performed using estimated values of controller. The sway influence of the cargo, the usage of the trolley speed input S-shaper and the PID controller was used to control the trolley speed. Jūriniame įvairiarūšiame terminale atliekant konteinerių krovos procesus, vienas iš krantinės kranų valdymo objektų yra vežimėlis. Viena iš problemų, su kuria susiduriama dažniausiai, yra konteinerio svyravimai, kuriuos, be išorinių veiksnių, taip pat sukelia ir vežimėlio judėji-mas. Remdamiesi paskutinių kelerių metų tyrimais, mokslininkai sukūrė įvairių valdymo algoritmų, kurie laboratorinėmis sąlygomis spren-džia atskiras krantinės kranų valdymo problemas. Tačiau kompleksinių ir efektyvių valdymo algoritmų ir jų valdymo sistemos parametrų nustatymo metodai vis dar kuriami ir tobulinami. Šiame darbe sudarytas krantinės krano vežimėlio su kabančiu kroviniu mechanizmo sis-temos matematinis modelis. Šis modelis realizuotas Matlab Simulink aplinkoje ir sprendžiamas taikant Dormand-Prince metodą. Sukurtas laboratorinio krantinės krano valdymo sistemos kompiuterinis modelis skirtas uždarosios valdymo sistemos PID valdiklio parametrams nustatyti, kai užduoties signalui taikomas S formos greičio kitimo profilis. Darbe pateiktas sistemos dinaminis modelis, aprašyta uždaroji valdymo sistema, pateikti kompiuterinio modeliavimo rezultatai, kuriuos planuojama panaudoti kaip pradinę informaciją realaus krano PID valdiklio parametrams derinti. Atlikta simuliacija naudojant nustatytas vertes ir įvertinti krovinio svyravimai taikant S formos greičio kitimo profilį kartu su PID valdikliu vežimėlio greičiui valdyti.


2015 ◽  
Vol 151 ◽  
pp. 1507-1518 ◽  
Author(s):  
Chen Liu ◽  
Jiang Wang ◽  
Bin Deng ◽  
Xi-Le Wei ◽  
Hai-Tao Yu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document