scholarly journals Techniques for Image Classification, Object Detection and Object Segmentation

Author(s):  
Ville Viitaniemi ◽  
Jorma Laaksonen
2021 ◽  
Vol 11 (15) ◽  
pp. 6721
Author(s):  
Jinyeong Wang ◽  
Sanghwan Lee

In increasing manufacturing productivity with automated surface inspection in smart factories, the demand for machine vision is rising. Recently, convolutional neural networks (CNNs) have demonstrated outstanding performance and solved many problems in the field of computer vision. With that, many machine vision systems adopt CNNs to surface defect inspection. In this study, we developed an effective data augmentation method for grayscale images in CNN-based machine vision with mono cameras. Our method can apply to grayscale industrial images, and we demonstrated outstanding performance in the image classification and the object detection tasks. The main contributions of this study are as follows: (1) We propose a data augmentation method that can be performed when training CNNs with industrial images taken with mono cameras. (2) We demonstrate that image classification or object detection performance is better when training with the industrial image data augmented by the proposed method. Through the proposed method, many machine-vision-related problems using mono cameras can be effectively solved by using CNNs.


Author(s):  
Hongguo Su ◽  
Mingyuan Zhang ◽  
Shengyuan Li ◽  
Xuefeng Zhao

In the last couple of years, advancements in the deep learning, especially in convolutional neural networks, proved to be a boon for the image classification and recognition tasks. One of the important practical applications of object detection and image classification can be for security enhancement. If dangerous objects or scenes can be identified automatically, then a lot of accidents can be prevented. For this purpose, in this paper we made use of state-of-the-art implementation of Faster Region-based Convolutional Neural Network (Faster R-CNN) based on the monitoring video of hoisting sites to train a model to detect the dangerous object and the worker. By extracting the locations of them, object-human interactions during hoisting, mainly for changes in their spatial location relationship, can be understood whereby estimating whether the scene is safe or dangerous. Experimental results showed that the pre-trained model achieved good performance with a high mean average precision of 97.66% on object detection and the proposed method fulfilled the goal of dangerous scenes recognition perfectly.


2020 ◽  
Vol 2020 (8) ◽  
pp. 221-1-221-7
Author(s):  
Jianhang Chen ◽  
Daniel Mas Montserrat ◽  
Qian Lin ◽  
Edward J. Delp ◽  
Jan P. Allebach

We introduce a new image dataset for object detection and 6D pose estimation, named Extra FAT. The dataset consists of 825K photorealistic RGB images with annotations of groundtruth location and rotation for both the virtual camera and the objects. A registered pixel-level object segmentation mask is also provided for object detection and segmentation tasks. The dataset includes 110 different 3D object models. The object models were rendered in five scenes with diverse illumination, reflection, and occlusion conditions.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 298
Author(s):  
Jiwen Tang ◽  
Damien Arvor ◽  
Thomas Corpetti ◽  
Ping Tang

Irrigation systems play an important role in agriculture. Center pivot irrigation systems are popular in many countries as they are labor-saving and water consumption efficient. Monitoring the distribution of center pivot irrigation systems can provide important information for agricultural production, water consumption and land use. Deep learning has become an effective method for image classification and object detection. In this paper, a new method to detect the precise shape of center pivot irrigation systems is proposed. The proposed method combines a lightweight real-time object detection network (PVANET) based on deep learning, an image classification model (GoogLeNet) and accurate shape detection (Hough transform) to detect and accurately delineate center pivot irrigation systems and their associated circular shape. PVANET is lightweight and fast and GoogLeNet can reduce the false detections associated with PVANET, while Hough transform can accurately detect the shape of center pivot irrigation systems. Experiments with Sentinel-2 images in Mato Grosso achieved a precision of 95% and a recall of 95.5%, which demonstrated the effectiveness of the proposed method. Finally, with the accurate shape of center pivot irrigation systems detected, the area of irrigation in the region was estimated.


Sign in / Sign up

Export Citation Format

Share Document