In1–xMnxSb: crystal structure, lattice parameter

Author(s):  
F. Matsukura
2011 ◽  
Vol 474-476 ◽  
pp. 1711-1714 ◽  
Author(s):  
Panadda Sittiketkron ◽  
Arrak Klinbumrung ◽  
Theerachai Bongkarn

This study investigated the influence of excess Bi2O3 and Na2CO3 on the crystal structure, microstructure and dielectric properties of (Bi0.5Na0.5)TiO3 (BNT) ceramics. The BNT ceramics were synthesized using the solid-state reaction method with various excess Bi2O3 and Na2CO3 levels (0, 1, 2, 3 and 4 mol%). The X-ray characterization revealed that all samples had a rhombohedral structure. A pure perovskite phase was obtained in all samples. The lattice parameter a tended to increase with increased excess Bi2O3 and Na2CO3 content in the calcined powders and sintered ceramics. The average particle size increased while, the average grain size tended to decreased with increased of excess Bi2O3 and Na2CO3 content. The depolarization temperature (Td) and the Curie temperature (Tc) were slightly decreased with the increase of excess Bi2O3 and Na2CO3 content. The dielectric properties were related to the density.


2018 ◽  
Vol 15 (1) ◽  
pp. 46
Author(s):  
Sundami Restiana ◽  
Ari Sulistyo Rini

Visualization of crystal structures and simulation of X-ray diffraction patterns of perovskite ceramic was successfully performed by VESTA software programs. The purpose of this research is to obtain the relation of lattice parameter, and composition to the diffraction pattern. The software program produces crystal structure information and a representative X-ray diffraction pattern for the ceramic materials. The program needs several input parameters such as the coordinates of each constituent atom, lattice parameters, and space symmetry. The obtained output of the software program are in the form of diffraction pattern graph and crystal structure data which gives the description of the profile and type (phase) of ceramic material. The results showed that the peak position and intensity of the diffraction pattern are influenced by the arrangement of  the atoms within the unit cell. The addition of impurity atoms such as Sr on the Ba side in BaTiO3 causes the BaTiO3 structure changes from Orthorombic (a≠b≠c) to Tetragonal (a=b≠c) structure. Based on the simulation, it can be predicted that the critical concentration of the change of structure occur at Sr concentration about 0.4.


2019 ◽  
Vol 33 (15) ◽  
pp. 1950149 ◽  
Author(s):  
N. T. Mamedov ◽  
S. H. Jabarov ◽  
D. P. Kozlenko ◽  
N. A. Ismayilova ◽  
M. Yu. Seyidov ◽  
...  

We have investigated the crystal structure of strongly anisotropic semiconductor TlInSe2 by neutron diffraction method under high pressure upto P = 3.3 GPa. It was shown that the tetragonal phase of TlInSe2 crystal (the space group I4/mcm) is stable in the whole investigated range of pressure. The lattice parameters dependence of the pressure and the unit cell volume are obtained, the linear coefficients of compressibility and the bulk moduli are calculated. At the low pressure, obtained value of compressibility for the lattice parameter a is k[Formula: see text] = 14.23 × 10[Formula: see text] GPa[Formula: see text] and for c is k[Formula: see text] = 5.93 × 10[Formula: see text] GPa[Formula: see text]. Obtained values for bulk modulus B0 and its pressure derivative B[Formula: see text] in tetragonal phase are 30(7) GPa and 4(1), respectively.


Sign in / Sign up

Export Citation Format

Share Document