Progress in Computational Magneto-Fluid-Dynamics for Flow Control

Author(s):  
J. S. Shang ◽  
P. G. Huang ◽  
D. B. Paul
Keyword(s):  
Author(s):  
Sara P. Rimer ◽  
Nikolaos D. Katopodes ◽  
April M. Warnock

The threat of accidental or deliberate toxic chemicals released into public spaces is a significant concern to public safety. The real-time detection and mitigation of such hazardous contaminants has the potential to minimize harm and save lives. We develop a computational fluid dynamics (CFD) flow control model with the capability of detecting and mitigating such contaminants. Furthermore, we develop a physical prototype to then test the computer model. The physical prototype is in its final stages of construction. Its current state, along with preliminary examples of the flow control model are presented throughout this paper.


Author(s):  
Cheng Liu ◽  
Wei Wei ◽  
Qingdong Yan ◽  
Brian K. Weaver ◽  
Houston G. Wood

Purpose The purpose of this paper is to study the transient cavitation process in torque converters with a particular focus on cavitation suppression with a passive flow control technique. Design/methodology/approach The transient fluid field in a torque converter was simulated by RANS-based computational fluid dynamics (CFD) in a full three-dimensional (3D) model. A homogeneous Rayleigh–Plesset cavitation model was used to simulate the transient cavitation process and the results were validated with test data. Various secondary flow passages (SFP) were applied to the stator blade. The cavitation behavior and hydrodynamic performance were simulated and compared to investigate the effect of SFP geometries on cavitation suppression. Findings Presented results show that cavitation in the torque converter is highly unstable at stall operating condition because of the combination of a high incidence angle and high flow velocity. The addition of an SFP to the stator blade produces a disruption of the re-entrant jet and reduces the overall degree of cavitation, consequently inhibiting the unstable cavitation and reducing performance degradation. Originality/value This paper provides unique insights into the complicated transient cavitation flow patterns found in torque converters and introduces effective passive flow control techniques useful to researchers and engineers in the areas of fluid dynamics and turbomachinery.


2013 ◽  
Vol 661 ◽  
pp. 81-86
Author(s):  
Lei Wang ◽  
Huai Chen ◽  
Ting Ting Liu ◽  
Jun Yang Ji ◽  
Xue Hui Gan

In the molding process of the tri-component composite spinning, the flow control of each component plays a significant impact on extrusion swell. This paper simulates the extrusion swell of the tri-component fiber in different flow ratio of different components based on Polyflow fluid dynamics simulation software, and measures the extrusion swell ratio of the tri-component fiber in different flow ratio of different components through the experiment. Simulation and experimental results show that by adjusting the melt flow ratio of the various components, we can obtain the desired extrusion swell ratio, which can improve the performance of the tri-component fiber.


Author(s):  
Donghua Lu ◽  
Kuo Wang ◽  
Qianhua Su ◽  
Jun Xing

A new design for the flow control component of an advanced accumulator (ACC) was introduced and numerically investigated in the paper. The flow control component can produce high flow rate and low flow rate at the different stages during the safety injection. The FLUENT computational fluid dynamics (CFD) was used in the simulation of the flow pattern in the flow chamber and the outlet. The flow pattern and pressure gradient in the vortex chamber were investigated. The results show the design can realize the high flow and low flow in this design.


Author(s):  
Mohamed Elhawary

Deep reinforcement learning (DRL) algorithms are rapidly making inroads into fluid mechanics, following the remarkable achievements of these techniques in a wide range of science and engineering applications. In this paper, a deep reinforcement learning (DRL) agent has been employed to train an artificial neural network (ANN) using computational fluid dynamics (CFD) data to perform active flow control (AFC) around a 2-D circular cylinder. Flow control strategies are investigated at a diameter-based Reynolds number Re_D = 100 using advantage actor-critic (A2C) algorithm by means of two symmetric plasma actuators located on the surface of the cylinder near the separation point. The DRL agent interacts with the computational fluid dynamics (CFD) environment through manipulating the non-dimensional burst frequency (f+) of the two plasma actuators, and the time-averaged surface pressure is used as a feedback observation to the deep neural networks (DNNs). The results show that a regular actuation using a constant non-dimensional burst frequency gives a maximum drag reduction of 21.8 %, while the DRL agent is able to learn a control strategy that achieves a drag reduction of 22.6%. By analyzing the flow-field, it is shown that the drag reduction is accompanied with a strong flow reattachment and a significant reduction in the mean velocity magnitude and velocity fluctuations at the wake region. These outcomes prove the great capabilities of the deep reinforcement learning (DRL) paradigm in performing active flow control (AFC), and pave the way toward developing robust flow control strategies for real-life applications.


Sign in / Sign up

Export Citation Format

Share Document