Mechanism of Oscillatory Rhythm of Retinal Ganglion cells in rd1 Mouse Retina

Author(s):  
J. H. Ye ◽  
S. B. Ryu ◽  
K. H. Kim ◽  
B. C. Rim ◽  
Y. S. Goo
2021 ◽  
Vol 15 ◽  
Author(s):  
Ashley M. Chen ◽  
Shaghauyegh S. Azar ◽  
Alexander Harris ◽  
Nicholas C. Brecha ◽  
Luis Pérez de Sevilla Müller

Manipulation of the phosphatase and tensin homolog (PTEN) pathway has been suggested as a therapeutic approach to treat or prevent vision loss due to retinal disease. In this study, we investigated the effects of deleting one copy of Pten in a well-characterized class of retinal ganglion cells called α-ganglion cells in the mouse retina. In Pten+/– retinas, α-ganglion cells did not exhibit major changes in their dendritic structure, although most cells developed a few, unusual loop-forming dendrites. By contrast, α-ganglion cells exhibited a significant decrease in heterologous and homologous gap junction mediated cell coupling with other retinal ganglion and amacrine cells. Additionally, the majority of OFF α-ganglion cells (12/18 cells) formed novel coupling to displaced amacrine cells. The number of connexin36 puncta, the predominant connexin that mediates gap junction communication at electrical synapses, was decreased by at least 50% on OFF α-ganglion cells. Reduced and incorrect gap junction connectivity of α-ganglion cells will affect their functional properties and alter visual image processing in the retina. The anomalous connectivity of retinal ganglion cells would potentially limit future therapeutic approaches involving manipulation of the Pten pathway for treating ganglion cell degeneration in diseases like glaucoma, traumatic brain injury, Parkinson’s, and Alzheimer’s diseases.


2003 ◽  
Vol 90 (3) ◽  
pp. 1704-1713 ◽  
Author(s):  
Stephen M. Carcieri ◽  
Adam L. Jacobs ◽  
Sheila Nirenberg

Numerous studies have shown that retinal ganglion cells exhibit an array of responses to visual stimuli. This has led to the idea that these cells can be sorted into distinct physiological classes, such as linear versus nonlinear or on versus off. Although many classification schemes are widely accepted, few studies have provided statistical support to favor one scheme over another. Here we test whether some of the most widely used classification schemes can be statistically verified, using the mouse retina as the model system. We used a cluster analysis approach and focused on 4 standard response parameters: 1) response latency, 2) response duration, 3) relative amplitude of the on and off responses, and 4) degree of nonlinearity in the stimulus-to-response transformation. For each parameter, we plotted its distribution and tested quantitatively, using a bootstrap method, whether it divided into distinct clusters. Our analysis showed that mouse ganglion cells clustered into several groups based on response latency, duration, and relative amplitude of the on and off responses, but did not cluster into more than one group based on degree of nonlinearity—the latter formed a single, large, continuous group. Thus while some well-known schemes for classifying ganglion cells could be statistically verified, others could not. Knowledge of which schemes can be confirmed is important for building models of how retinal output is processed and how retinal circuits are built. Finally, this cluster analysis approach is general and can be used to test other classification proposals as well, both physiological and anatomical.


2019 ◽  
Author(s):  
Mahtab Moshirpour ◽  
Amy S. Nakashima ◽  
Nicole Sehn ◽  
Victoria M. Smith ◽  
Richard H. Dyck ◽  
...  

ABSTRACTZinc is a trace element that is essential for a large number of biological and biochemical processes in the body. In the nervous system zinc is packaged into synaptic vesicles by the ZnT3 transporter, and synaptic release of zinc can influence the activity of postsynaptic cells, either directly though its own cognate receptors, or indirectly by modulating activation of receptors for other neurotransmitters. Here, we explore the anatomical and functional aspects of zinc in the circadian system. Melanopsin-containing retinal ganglion cells in the mouse retina were found to colocalize ZnT3, indicating that they can release zinc at their synaptic targets. While the master circadian clock in the hamster suprachiasmatic nucleus (SCN) was found to contain, at best, sparse zincergic input, the intergeniculate leaflet (IGL) was found to have prominent zincergic input. Levels of zinc in these areas were not affected by time of day. Additionally, IGL zinc staining persisted following enucleation, indicating other prominent sources of zinc instead of, or in addition to, the retina. Neither enhancement nor chelation of free zinc at either the SCN or IGL altered circadian responses to phase-shifting light in hamsters. Finally, entrainment, free-running, and circadian responses to light were explored in mice lacking the ZnT3 gene. In every aspect explored, the ZnT3-KO mice were not significantly different from their wildtype counterparts. These findings highlight the presence of zinc in areas critical for circadian functioning but have yet to identify a role for zinc in these areas.HighlightsThe synaptic zinc transporter ZnT3 is found in melanopsin-containing retinal ganglion cells.While zinc input to the hamster SCN was found to be sparse at best, prominent zincergic staining was found throughout the IGL.Zinc levels in the SCN and IGL did not change between the night and day.Neither increasing nor decreasing zinc levels in either the SCN or IGL had an influence on circadian responses to light.Mice lacking the ZnT3 transporter did not differ from wildtype mice on a wide variety of circadian measures.


2014 ◽  
Vol 112 (9) ◽  
pp. 2092-2101 ◽  
Author(s):  
Hui Chen ◽  
Xiaorong Liu ◽  
Ning Tian

The direction-selective ganglion cells (DSGCs) and orientation-selective ganglion cells (OSGCs) encode the directional and the orientational information of a moving object, respectively. It is unclear how DSGCs and OSGCs mature in the mouse retina during postnatal development. Here we investigated the development of DSGCs and OSGCs after eye-opening. We show that 1) DSGCs and OSGCs are present at postnatal day 12 (P12), just before eye-opening; 2) the fractions of both DSGCs and OSGCs increase from P12 to P30; 3) the development of DSGCs and OSGCs is subtype dependent; and 4) direction and orientation selectivity are two separate features of retinal ganglion cells (RGCs) in the mouse retina. We classified RGCs into different functional subtypes based on their light response properties. Compared with P12, the direction and orientation selectivity of ON-OFF RGCs but not ON RGCs became stronger at P30. The tuning width of DSGCs for both ON and ON-OFF subtypes decreased with age. For OSGCs, we divided them into non-direction-selective (non-DS) OSGCs and direction-selective OSGCs (DS&OSGCs). For DS&OSGCs, we found that there was no correlation between the direction and orientation selectivity, and that the tuning width of both ON and ON-OFF subtypes remained unchanged with age. For non-DS OSGCs, the tuning width of ON but not ON-OFF subtype decreased with development. These findings provide a foundation to reveal the molecular and synaptic mechanisms underlying the development of the direction and orientation selectivity in the retina.


2015 ◽  
Vol 41 (6) ◽  
pp. 844-855 ◽  
Author(s):  
Soo-Jin Kim ◽  
Mi-Sun Sung ◽  
Hwan Heo ◽  
Jae-Hyuk Lee ◽  
Sang-Woo Park

2019 ◽  
Vol 45 (8) ◽  
pp. 955-964 ◽  
Author(s):  
Jung Won Park ◽  
Mi Sun Sung ◽  
Jun Young Ha ◽  
Yue Guo ◽  
Helong Piao ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 530 ◽  
Author(s):  
Seema Banerjee ◽  
Qin Wang ◽  
Chung Him So ◽  
Feng Pan

Myopia is a major public health problem, affecting one third of the population over 12 years old in the United States and more than 80% of people in Hong Kong. Myopia is attributable to elongation of the eyeball in response to defocused images that alter eye growth and refraction. It is known that the retina can sense the focus of an image, but the effects of defocused images on signaling of population of retinal ganglion cells (RGCs) that account either for emmetropization or refractive errors has still to be elucidated. Thorough knowledge of the underlying mechanisms could provide insight to understanding myopia. In this study, we found that focused and defocused images can change both excitatory and inhibitory conductance of ON alpha, OFF alpha and ON–OFF retinal ganglion cells in the mouse retina. The firing patterns of population of RGCs vary under the different powers of defocused images and can be affected by dopamine receptor agonists/antagonists’ application. OFF-delayed RGCs or displaced amacrine cells (dACs) with time latency of more than 0.3 s had synchrony firing with other RGCs and/or dACs. These spatial synchrony firing patterns between OFF-delayed cell and other RGCs/dACs were significantly changed by defocused image, which may relate to edge detection. The results suggested that defocused images induced changes in the multineuronal firing patterns and whole cell conductance in the mouse retina. The multineuronal firing patterns can be affected by dopamine receptors’ agonists and antagonists. Synchronous firing of OFF-delayed cells is possibly related to edge detection, and understanding of this process may reveal a potential therapeutic target for myopia patients.


2004 ◽  
Vol 186 (1) ◽  
pp. 6-19 ◽  
Author(s):  
Carla B. Mellough ◽  
Qi Cui ◽  
Kirsty L. Spalding ◽  
Natalie A. Symons ◽  
Margaret A. Pollett ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document