Glowworm Swarm Optimization for Searching Higher Dimensional Spaces

Author(s):  
K. N. Krishnanand ◽  
D. Ghose
2016 ◽  
Vol 7 (1) ◽  
pp. 32-54 ◽  
Author(s):  
Ibrahim Aljarah ◽  
Simone A. Ludwig

Glowworm Swarm Optimization (GSO) is one of the common swarm intelligence algorithms, where GSO has the ability to optimize multimodal functions efficiently. In this paper, a parallel MapReduce-based GSO algorithm is proposed to speedup the GSO optimization process. The authors argue that GSO can be formulated based on the MapReduce parallel programming model quite naturally. In addition, they use higher dimensional multimodal benchmark functions for evaluating the proposed algorithm. The experimental results show that the proposed algorithm is appropriate for optimizing difficult multimodal functions with higher dimensions and achieving high peak capture rates. Furthermore, a scalability analysis shows that the proposed algorithm scales very well with increasing swarm sizes. In addition, an overhead of the Hadoop infrastructure is investigated to find if there is any relationship between the overhead, the swarm size, and number of nodes used.


2019 ◽  
Vol 93 ◽  
pp. 101923 ◽  
Author(s):  
Yu Xiuwu ◽  
Liu Qin ◽  
Liu Yong ◽  
Hu Mufang ◽  
Zhang Ke ◽  
...  

Author(s):  
Guangyu Zhou ◽  
Aijia Ouyang ◽  
Yuming Xu

To overcome the shortcomings of the basic glowworm swarm optimization (GSO) algorithm, such as low accuracy, slow convergence speed and easy to fall into local minima, chaos algorithm and cloud model algorithm are introduced to optimize the evolution mechanism of GSO, and a chaos GSO algorithm based on cloud model (CMCGSO) is proposed in the paper. The simulation results of benchmark function of global optimization show that the CMCGSO algorithm performs better than the cuckoo search (CS), invasive weed optimization (IWO), hybrid particle swarm optimization (HPSO), and chaos glowworm swarm optimization (CGSO) algorithm, and CMCGSO has the advantages of high accuracy, fast convergence speed and strong robustness to find the global optimum. Finally, the CMCGSO algorithm is used to solve the problem of face recognition, and the results are better than the methods from literatures.


2020 ◽  
Vol 17 (12) ◽  
pp. 5447-5456
Author(s):  
R. M. Alamelu ◽  
K. Prabu

Wireless sensor network (WSN) becomes popular due to its applicability in distinct application areas like healthcare, military, search and rescue operations, etc. In WSN, the sensor nodes undergo deployment in massive number which operates autonomously in harsh environment. Because of limited resources and battery operated sensor nodes, energy efficiency is considered as a main design issue. To achieve, clustering is one of the effective technique which organizes the set of nodes into clusters and cluster head (CH) selection takes place. This paper presents a new Quasi Oppositional Glowworm Swarm Optimization (QOGSO) algorithm for energy efficient clustering in WSN. The proposed QOGSO algorithm is intended to elect the CHs among the sensor nodes using a set of parameters namely residual energy, communication cost, link quality, node degree and node marginality. The QOGSO algorithm incorporates quasi oppositional based learning (QOBL) concept to improvise the convergence rate of GSO technique. The QOGSO algorithm effectively selects the CHs and organizes clusters for minimized energy dissipation and maximum network lifetime. The performance of the QOGSO algorithm has been evaluated and the results are assessed interms of distinct evaluation parameters.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jasleen Kaur ◽  
Punam Rani ◽  
Brahm Prakash Dahiya

Purpose This paper aim to find optimal cluster head and minimize energy wastage in WSNs. Wireless sensor networks (WSNs) have low power sensor nodes that quickly lose energy. Energy efficiency is most important factor in WSNs, as they incorporate limited sized batteries that would not be recharged or replaced. The energy possessed by the sensor nodes must be optimally used so as to increase the lifespan. The research is proposing hybrid artificial bee colony and glowworm swarm optimization [Hybrid artificial bee colony and glowworm swarm optimization (HABC-GSO)] algorithm to select the cluster heads. Previous research has considered fitness-based glowworm swarm with Fruitfly (FGF) algorithm, but existing research was limited to maximizing network lifetime and energy efficiency. Design/methodology/approach The proposed HABC-GSO algorithm selects global optima and improves convergence ratio. It also performs optimal cluster head selection by balancing between exploitation and exploration phases. The simulation is performed in MATLAB. Findings The HABC-GSO performance is evaluated with existing algorithms such as particle swarm optimization, GSO, Cuckoo Search, Group Search Ant Lion with Levy Flight, Fruitfly Optimization algorithm and grasshopper optimization algorithm, a new FGF in the terms of alive nodes, normalized energy, cluster head distance and delay. Originality/value This research work is original.


2021 ◽  
pp. 101-107
Author(s):  
Mohammad Alshehri ◽  

Presently, a precise localization and tracking process becomes significant to enable smartphone-assisted navigation to maximize accuracy in the real-time environment. Fingerprint-based localization is the commonly available model for accomplishing effective outcomes. With this motivation, this study focuses on designing efficient smartphone-assisted indoor localization and tracking models using the glowworm swarm optimization (ILT-GSO) algorithm. The ILT-GSO algorithm involves creating a GSO algorithm based on the light-emissive characteristics of glowworms to determine the location. In addition, the Kalman filter is applied to mitigate the estimation process and update the initial position of the glowworms. A wide range of experiments was carried out, and the results are investigated in terms of distinct evaluation metrics. The simulation outcome demonstrated considerable enhancement in the real-time environment and reduced the computational complexity. The ILT-GSO algorithm has resulted in an increased localization performance with minimal error over the recent techniques.


Sign in / Sign up

Export Citation Format

Share Document