How to Design a Linear Cover Time Random Walk on a Finite Graph

Author(s):  
Yoshiaki Nonaka ◽  
Hirotaka Ono ◽  
Kunihiko Sadakane ◽  
Masafumi Yamashita
Keyword(s):  
2000 ◽  
Vol 32 (01) ◽  
pp. 177-192 ◽  
Author(s):  
K. S. Chong ◽  
Richard Cowan ◽  
Lars Holst

A simple asymmetric random walk on the integers is stopped when its range is of a given length. When and where is it stopped? Analogous questions can be stated for a Brownian motion. Such problems are studied using results for the classical ruin problem, yielding results for the cover time and the range, both for asymmetric random walks and Brownian motion with drift.


2013 ◽  
Vol 23 (2) ◽  
pp. 269-289 ◽  
Author(s):  
TAL ORENSHTEIN ◽  
IGOR SHINKAR

We study a discrete time self-interacting random process on graphs, which we call greedy random walk. The walker is located initially at some vertex. As time evolves, each vertex maintains the set of adjacent edges touching it that have not yet been crossed by the walker. At each step, the walker, being at some vertex, picks an adjacent edge among the edges that have not traversed thus far according to some (deterministic or randomized) rule. If all the adjacent edges have already been traversed, then an adjacent edge is chosen uniformly at random. After picking an edge the walker jumps along it to the neighbouring vertex. We show that the expected edge cover time of the greedy random walk is linear in the number of edges for certain natural families of graphs. Examples of such graphs include the complete graph, even degree expanders of logarithmic girth, and the hypercube graph. We also show that GRW is transient in$\mathbb{Z}^d$for alld≥ 3.


Algorithms ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 149 ◽  
Author(s):  
Ioannis Lamprou ◽  
Russell Martin ◽  
Paul Spirakis

We define a general model of stochastically-evolving graphs, namely the edge-uniform stochastically-evolving graphs. In this model, each possible edge of an underlying general static graph evolves independently being either alive or dead at each discrete time step of evolution following a (Markovian) stochastic rule. The stochastic rule is identical for each possible edge and may depend on the past k ≥ 0 observations of the edge’s state. We examine two kinds of random walks for a single agent taking place in such a dynamic graph: (i) The Random Walk with a Delay (RWD), where at each step, the agent chooses (uniformly at random) an incident possible edge, i.e., an incident edge in the underlying static graph, and then, it waits till the edge becomes alive to traverse it. (ii) The more natural Random Walk on what is Available (RWA), where the agent only looks at alive incident edges at each time step and traverses one of them uniformly at random. Our study is on bounding the cover time, i.e., the expected time until each node is visited at least once by the agent. For RWD, we provide a first upper bound for the cases k = 0 , 1 by correlating RWD with a simple random walk on a static graph. Moreover, we present a modified electrical network theory capturing the k = 0 case. For RWA, we derive some first bounds for the case k = 0 , by reducing RWA to an RWD-equivalent walk with a modified delay. Further, we also provide a framework that is shown to compute the exact value of the cover time for a general family of stochastically-evolving graphs in exponential time. Finally, we conduct experiments on the cover time of RWA in edge-uniform graphs and compare the experimental findings with our theoretical bounds.


2014 ◽  
Vol 51 (1) ◽  
pp. 247-261
Author(s):  
Joseph Lehec

A recent result of Ding, Lee and Peres (2012) expressed the cover time of the random walk on a graph in terms of generic chaining for the commute distance. Their argument is based on Dynkin's isomorphism theorem. The purpose of this article is to present an alternative approach to this problem, based only on elementary hitting time estimates and chaining arguments.


Author(s):  
Agelos Georgakopoulos ◽  
John Haslegrave ◽  
Thomas Sauerwald ◽  
John Sylvester

Abstract We apply the power-of-two-choices paradigm to a random walk on a graph: rather than moving to a uniform random neighbour at each step, a controller is allowed to choose from two independent uniform random neighbours. We prove that this allows the controller to significantly accelerate the hitting and cover times in several natural graph classes. In particular, we show that the cover time becomes linear in the number n of vertices on discrete tori and bounded degree trees, of order $${\mathcal O}(n\log \log n)$$ on bounded degree expanders, and of order $${\mathcal O}(n{(\log \log n)^2})$$ on the Erdős–Rényi random graph in a certain sparsely connected regime. We also consider the algorithmic question of computing an optimal strategy and prove a dichotomy in efficiency between computing strategies for hitting and cover times.


Author(s):  
David J. Aldous

We revisit an old topic in algorithms, the deterministic walk on a finite graph which always moves toward the nearest unvisited vertex until every vertex is visited. There is an elementary connection between this cover time and ball-covering (metric entropy) measures. For some familiar models of random graphs, this connection allows the order of magnitude of the cover time to be deduced from first passage percolation estimates. Establishing sharper results seems a challenging problem.


Sign in / Sign up

Export Citation Format

Share Document