Intelligent Power System Frequency Regulations Concerning the Integration of Wind Power Units

Author(s):  
H. Bevrani ◽  
F. Daneshfar ◽  
R. P. Daneshmand
2013 ◽  
Vol 58 (36) ◽  
pp. 4557-4565 ◽  
Author(s):  
HaiShun Sun ◽  
Ju Liu ◽  
JinYu Wen ◽  
ShiJie Cheng ◽  
Cheng Luo ◽  
...  

Author(s):  
Rafael Sebastián ◽  
Jerónimo Quesada

"This study presents the modelling and dynamic simulation of an Isolated Wind Power System (IWPS) consisting of a Wind Turbine Generator (WTG), a synchronous machine (SM), consumer load, dump load (DL) and a Battery Energy Storage System (BESS). First the IWPS architecture and the dynamic models of the IWPS components are described. Second, the control requirements for frequency regulation of the IWPS are studied and a PID regulator to govern the active power stored+dumped by the BESS+DL combination or supplied by the BESS along with a power sharing algorithm between the BESS and DL is presented. Finally the IWPS is simulated facing to variations to load and WTG power. The simulation results are given showing graphs of the main electrical variables in the IWPS: system frequency and voltage and active power in each component. The results show how the BESS or BESS+DL combination regulates correctly the isolated system frequency. The results also show that the BESS improves the IWPS reliability when compared with the frequency control obtained using only the DL."


2013 ◽  
Vol 291-294 ◽  
pp. 407-414 ◽  
Author(s):  
Guo Peng Zhou ◽  
Fu Feng Miao ◽  
Xi Sheng Tang ◽  
Tao Wu ◽  
Shan Ying Li ◽  
...  

The output power of wind farms has significant randomness and variability, which results in adverse impacts on power system frequency stability. This paper extracts wind power fluctuation feature with the HHT (Hilbert-Huang Transform) method. Firstly, the original wind power data was decomposed into several IMFs (Intrinsic Mode Functions) and a tendency component by using the EMD (Empirical Mode Decomposition) method. Secondly, the instantaneous frequency of each IMF was calculated. On this basis, taking a WSCC 9-bus power system as benchmark, the impact on power system frequency caused by wind power fluctuation was simulated in a real-time simulation platform, and the key component which results in the frequency deviation was found. The simulation results validate the wind power fluctuation impacts on frequency deviation, underlying the following study on power system frequency stability under the situation of large-scale intermittent generation access into the grid.


2017 ◽  
Vol 40 (5) ◽  
pp. 455-462 ◽  
Author(s):  
Hamid Asadi bagal ◽  
Mir mohammad Mir mousavi ◽  
Milad Janghorban Lariche ◽  
Mohammad Mohammadinodoushan ◽  
Hosein Hayati

Sign in / Sign up

Export Citation Format

Share Document