Hormone-Responsive Element

2011 ◽  
pp. 1734-1734
2005 ◽  
Vol 19 (9) ◽  
pp. 2320-2334 ◽  
Author(s):  
Amena Archer ◽  
Dominique Sauvaget ◽  
Valérie Chauffeton ◽  
Pierre-Etienne Bouchet ◽  
Jean Chambaz ◽  
...  

Abstract In the small intestine, the expression of the apolipoprotein (apo) C-III and A-IV genes is restricted to the enterocytes of the villi. We have previously shown that, in transgenic mice, specific expression of the human apo C-III requires a hormone-responsive element (HRE) located in the distal region of the human apoA-IV promoter. This HRE binds the hepatic nuclear factors (HNF)-4α and γ. Here, intraduodenal injections in mice and infections of human enterocytic Caco-2/TC7 cells with an adenovirus expressing a dominant-negative form of HNF-4α repress the expression of the apoA-IV gene, demonstrating that HNF-4 controls the apoA-IV gene expression in enterocytes. We show that HNF-4α and γ functionally interact with a second HRE present in the proximal region of the human apoA-IV promoter. New sets of transgenic mice expressing mutated forms of the promoter, combined with the human apo C-III enhancer, demonstrate that, whereas a single HRE is sufficient to reproduce the physiological cephalo-caudal gradient of apoA-IV gene expression, both HREs are required for expression that is restricted to villi. The combination of multiple HREs may specifically recruit regulatory complexes associating HNF-4 and either coactivators in villi or corepressors in crypts.


1991 ◽  
Vol 11 (7) ◽  
pp. 3814-3820 ◽  
Author(s):  
J N Rottman ◽  
R L Widom ◽  
B Nadal-Ginard ◽  
V Mahdavi ◽  
S K Karathanasis

The gene coding for apolipoprotein AI, a plasma protein involved in the transport of cholesterol and other lipids in the plasma, is expressed predominantly in liver and intestine. Previous work in our laboratory has shown that hepatocyte-specific expression is determined by synergistic interactions between transcription factors bound to three separate sites, sites A (-214 to -192), B (-169 to -146), and C (-134 to -119), within a powerful liver-specific enhancer located in the region -222 to -110 nucleotides upstream of the apolipoprotein AI gene transcription start site (+1). In this study, it was found that site A is a highly selective retinoic acid-responsive element (RARE) that responds preferentially to the recently identified retinoic acid receptor RXR alpha over the previously characterized retinoic acid receptors RAR alpha and RAR beta. Control experiments indicated that a RARE in the regulatory region of the laminin B1 gene responds preferentially to RAR alpha and RAR beta over RXR alpha, while a previously described palindromic thyroid hormone-responsive element responds similarly to all three of these receptors. Gel retardation experiments showed that the activity of these RAREs is concordant with receptor binding. These results indicate that different RAREs may play a fundamental role in defining distinctive retinoic acid cellular response pathways and suggest that retinoic acid response pathways mediated by RXR alpha play an important role in cholesterol and retinoid transport and metabolism.


2015 ◽  
Vol 47 (12) ◽  
pp. 634-643 ◽  
Author(s):  
Robert A. McKnight ◽  
Christian C. Yost ◽  
Xing Yu ◽  
Julia E. Wiedmeier ◽  
Christopher W. Callaway ◽  
...  

Intrauterine growth restriction (IUGR) is a common human pregnancy complication. IUGR offspring carry significant postnatal risk for early-onset metabolic syndrome, which is associated with persistent reduction in IGF-1 protein expression. We have previously shown that preadolescent IUGR male mice have decreased hepatic IGF-1 mRNA and circulating IGF-1 protein at postnatal day 21, the age when growth hormone (GH) normally upregulates hepatic IGF-1 expression. Here we studied nucleosome occupancy and CpG methylation at a putative growth hormone-responsive element in intron 2 (in2GHRE) of the hepatic IGF-1 gene in normal, sham-operated, and IUGR mice. Nucleosome occupancy and CpG methylation were determined in embryonic stem cells (ESCs) and in liver at postnatal days 14, 21, and 42. For CpG methylation, additional time points out to 2 yr were analyzed. We confirmed the putative mouse in2GHRE was GH-responsive, and in normal mice, a single nucleosome was displaced from the hepatic in2GHRE by postnatal day 21, which exposed two STAT5b DNA binding sites. Nucleosome displacement correlated with developmentally programmed CpG demethylation. Finally, IUGR significantly altered the nucleosome-depleted region (NDR) at the in2GHRE of IGF-1 on postnatal day 21, with either complete absence of the NDR or with a shifted NDR exposing only one of two STAT5b DNA binding sites. An NDR shift was also seen in offspring of sham-operated mothers. We conclude that prenatal insult such as IUGR or anesthesia/surgery could perturb the proper formation of a well-positioned NDR at the mouse hepatic IGF-1 in2GHRE necessary for transitioning to an open chromatin state.


1991 ◽  
Vol 11 (7) ◽  
pp. 3814-3820
Author(s):  
J N Rottman ◽  
R L Widom ◽  
B Nadal-Ginard ◽  
V Mahdavi ◽  
S K Karathanasis

The gene coding for apolipoprotein AI, a plasma protein involved in the transport of cholesterol and other lipids in the plasma, is expressed predominantly in liver and intestine. Previous work in our laboratory has shown that hepatocyte-specific expression is determined by synergistic interactions between transcription factors bound to three separate sites, sites A (-214 to -192), B (-169 to -146), and C (-134 to -119), within a powerful liver-specific enhancer located in the region -222 to -110 nucleotides upstream of the apolipoprotein AI gene transcription start site (+1). In this study, it was found that site A is a highly selective retinoic acid-responsive element (RARE) that responds preferentially to the recently identified retinoic acid receptor RXR alpha over the previously characterized retinoic acid receptors RAR alpha and RAR beta. Control experiments indicated that a RARE in the regulatory region of the laminin B1 gene responds preferentially to RAR alpha and RAR beta over RXR alpha, while a previously described palindromic thyroid hormone-responsive element responds similarly to all three of these receptors. Gel retardation experiments showed that the activity of these RAREs is concordant with receptor binding. These results indicate that different RAREs may play a fundamental role in defining distinctive retinoic acid cellular response pathways and suggest that retinoic acid response pathways mediated by RXR alpha play an important role in cholesterol and retinoid transport and metabolism.


2000 ◽  
Vol 165 (2) ◽  
pp. 391-397 ◽  
Author(s):  
K Ichikawa ◽  
T Miyamoto ◽  
T Kakizawa ◽  
S Suzuki ◽  
A Kaneko ◽  
...  

The thyromimetic compound SK&F L-94901 shows more potent thyromimetic activity in the liver than in the pituitary gland or heart when administered to rats. The mechanisms of liver-selectivity of SK&F L-94901 were examined using cultured rat hepatoma cells (dRLH-84) and rat pituitary tumor cells (GH3), both of which showed saturable cellular uptake of tri-iodothyronine (T(3)). When isolated nuclei with partial disruption of the outer nuclear membrane were used, SK L-94901 competed for [(125)I]T(3) binding to nuclear receptors almost equally in dRLH-84 and GH3 cells. SK L-94901 also did not discriminate thyroid hormone receptors (TR) alpha1 and beta1 in terms of binding affinity and activation of the thyroid hormone responsive element. In intact cells, however, SK L-94901 was a more potent inhibitor of nuclear [(125)I]T(3) binding in dRLH-84 cells than in GH3 cells at an early phase of the nuclear uptake process and after binding equilibrium. These data suggest that SK L-94901 is more effectively transported to nuclear TRs in hepatic cells than in pituitary cells and therefore shows liver-selective thyromimetic activity. In conclusion, SK L-94901 discriminates hepatic cells and pituitary cells at the nuclear transport process. The cellular transporters responsible for this discrimination were not evident.


2009 ◽  
Vol 39 (1-2) ◽  
pp. 22-26 ◽  
Author(s):  
Zhi-Min Xiao ◽  
Li Sun ◽  
Yu-Min Liu ◽  
Jun-Jian Zhang ◽  
Jian Huang

Sign in / Sign up

Export Citation Format

Share Document