scholarly journals Pixels and their neighbors: Finite volume

2016 ◽  
Vol 35 (8) ◽  
pp. 703-706 ◽  
Author(s):  
Rowan Cockett ◽  
Lindsey J. Heagy ◽  
Douglas W. Oldenburg

We take you on the journey from continuous equations to their discrete matrix representations using the finite-volume method for the direct current (DC) resistivity problem. These techniques are widely applicable across geophysical simulation types and have their parallels in finite element and finite difference. We show derivations visually, as you would on a whiteboard, and have provided an accompanying notebook at http://github.com/seg to explore the numerical results using SimPEG ( Cockett et al., 2015 ).

Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1183
Author(s):  
Cui Guo ◽  
Yinglin Wang ◽  
Yuesheng Luo

In this paper, for solving the nonlinear Rosenau-KdV equation, a conservative implicit two-level nonlinear scheme is proposed by a new numerical method named the multiple integral finite volume method. According to the order of the original differential equation’s highest derivative, we can confirm the number of integration steps, which is just called multiple integration. By multiple integration, a partial differential equation can be converted into a pure integral equation. This is very important because we can effectively avoid the large errors caused by directly approximating the derivative of the original differential equation using the finite difference method. We use the multiple integral finite volume method in the spatial direction and use finite difference in the time direction to construct the numerical scheme. The precision of this scheme is O(τ2+h3). In addition, we verify that the scheme possesses the conservative property on the original equation. The solvability, uniqueness, convergence, and unconditional stability of this scheme are also demonstrated. The numerical results show that this method can obtain highly accurate solutions. Further, the tendency of the numerical results is consistent with the tendency of the analytical results. This shows that the discrete scheme is effective.


Author(s):  
Lingyu Sun ◽  
Weiwei Chen ◽  
Xiaojie Wang ◽  
Ning Kang ◽  
Bin Xu ◽  
...  

The present paper studied the dynamic response of an underwater system with its navigation plate rotated relative to the main body until it was blocked by an energy absorber. In this process, the relation between fluid-driving moment and speed of main body, as well as the relation between rotation angle of the plate and design parameters of absorber, was investigated through combined finite element method and finite volume method. Before the plate contacted with the energy absorber, it was modeled by linear elastic material, the movement process was solved by finite volume method with dynamic boundary. When the plate started to contact and crash with the absorber, it was modeled by elastic-plastic material, and the interaction of fluid-structure coupling was simulated by explicit finite element method in LSDYNA and finite volume method in FLUENT. The two-way data exchange on the interface between fluid and structure was carried out through equivalent force and moment on each patch of the interface. In addition, the simulation accuracy on large plastic deformation of absorber was verified through a group of drop hammer experiments. After the energy absorber was crushed to ultimate shape, the open angle of plate reached the maximum value and the plate kept relative static to the rigid body. The maximum structural stress and deformation, the opening time and angle of the plate were evaluated by numerical method. It is demonstrated that the proposed method can effectively predict the dynamic response of underwater system under impact loads, and both the absorption capability of the block and the speed of moving body affect the dynamic response history and structural safety.


2013 ◽  
Vol 392 ◽  
pp. 100-104 ◽  
Author(s):  
Fareed Ahmed ◽  
Faheem Ahmed ◽  
Yong Yang

In this paper we present a robust, high order method for numerical solution of multidimensional compressible inviscid flow equations. Our scheme is based on Nodal Discontinuous Galerkin Finite Element Method (NDG-FEM). This method utilizes the favorable features of Finite Volume Method (FVM) and Finite Element Method (FEM). In this method, space discretization is carried out by finite element discontinuous approximations. The resulting semi discrete differential equations were solved using explicit Runge-Kutta (ERK) method. In order to compute fluxes at element interfaces, we have used Roe Approximate scheme. In this article, we demonstrate the use of exponential filter to remove Gibbs oscillations near the shock waves. Numerical predictions for two dimensional compressible fluid flows are presented here. The solution was obtained with overall order of accuracy of 3. The numerical results obtained are compared with experimental and finite volume method results.


Author(s):  
Bryce L. Fowler ◽  
Raymond K. Yee

Polymers constitute a large class of nearly incompressible solid materials (i.e., Poisson’s Ratio near 0.5). These materials are often used as passive vibration isolators. Accurately modeling vibration isolators made of nearly incompressible materials has been extremely difficult with standard finite element analysis. This paper provides an alternative to the specialized finite element formulations currently used to model incompressible materials. The finite volume methodology of computational fluid dynamics is employed in this paper to solve the Hooke’s Law equations in solid mechanics. Test cases have been performed to evaluate the performance of finite volume method applied to solid mechanics problems. The formulation has been coded in Matlab for practical use. Based on the preliminary test case results, the finite volume formulation compares favorably to finite element method.


2001 ◽  
Vol 6 (2) ◽  
pp. 262-269 ◽  
Author(s):  
H. Kalis ◽  
A. Lasis

The approximation of axial‐symmetric heat transport problem in a cylinder is based on the finite volume method. In the classical formulation of the finite volume method it is assumed that the flux terms in the control volume are approximated with the finite difference expressions. Then in the 1‐D case the corresponding finite difference scheme for the given source function is not exact. There we propose the exact difference scheme. In 2‐D case the corresponding integrals are approximated using different quadrature formulae. This procedure allows one to reduce the heat transport problem described by a partial differential equation to an initial‐value problem for a system of two ordinary differential equations of the order depending on the quadrature formulae used. Numerical solutions of the corresponding algorithms are obtained using MAPLE routines for stiff system of ordinary differential equations.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5997
Author(s):  
Bernd-Arno Behrens ◽  
Klaus Dröder ◽  
André Hürkamp ◽  
Marcel Droß ◽  
Hendrik Wester ◽  
...  

Friction drilling is a widely used process to produce bushings in sheet materials, which are processed further by thread forming to create a connection port. Previous studies focused on the process parameters and did not pay detailed attention to the material flow of the bushing. In order to describe the material behaviour during a friction drilling process realistically, a detailed material characterisation was carried out. Temperature, strain rate, and rolling direction dependent tensile tests were performed. The results were used to parametrise the Johnson–Cook hardening and failure model. With the material data, numerical models of the friction drilling were created using the finite element method in 3D as well as 2D, and the finite volume method in 3D. Furthermore, friction drilling tests were carried out and analysed. The experimental results were compared with the numerical findings to evaluate which modelling method could describe the friction drilling process best. Highest imaging quality to reality was shown by the finite volume method in comparison to the experiments regarding the material flow and the geometry of the bushing.


Sign in / Sign up

Export Citation Format

Share Document