Modelling of Groundwater Fluctuations in the Area Between the Narew and Suprasl Rivers

Author(s):  
Waldemar Mioduszewski ◽  
Erik P. Querner ◽  
Justyna Bielecka
2016 ◽  
Vol 30 (24) ◽  
pp. 4556-4567 ◽  
Author(s):  
Andrew J. Newell ◽  
Christopher H. Vane ◽  
James P.R. Sorensen ◽  
Vicky Moss-Hayes ◽  
Daren C. Gooddy

Author(s):  
Amirhossein Najafabadipour ◽  
Gholamreza Kamali ◽  
Hossein Nezamabadi-pour

The Forecasting of Groundwater Fluctuations is a useful tool for managing groundwater resources in the mining area. Water resources management requires identifying potential periods for groundwater drainage to prevent groundwater from entering the mine pit and imposing high costs. In this research, Auto-Regressive Integrated Moving Average (ARIMA) and Holt-Winters Exponential Smoothing (HWES) data-driven models were used for short-term modeling of the groundwater fluctuations in a piezometer around the Gohar Zamin Iron Ore Mine. For this purpose, 250 non-seasonal groundwater fluctuations data in the period 22-Nov-2018 to 29-Jul-2019, 200 data for modeling, and 50 data for prediction were used. To take advantage of all the features of the two developed models, the predictions are combined with different methods and specific weights. The results show better accuracy for the ARIMA method between the two short-term forecasts, while the HWES method requires less time for modeling. Also, among all the predictions made, the highest accuracy for the combined least-squares method is for forecasting the groundwater fluctuations in the short-term. All the forecasts show a decrease in the groundwater fluctuations, indicating pumping wells around the Gohar Zamin Iron Ore Mine area.


2019 ◽  
Vol 7 (3) ◽  
pp. 58 ◽  
Author(s):  
Jiong Li ◽  
Mingguang Li ◽  
Lulu Zhang ◽  
Hui Chen ◽  
Xiaohe Xia ◽  
...  

The coastal micro-confined aquifer (MCA) in Shanghai is characterized by shallow burial depth, high artesian head, and discontinuous distribution. It has a significant influence on underground space development, especially where the MCA is directly connected with deep confined aquifers. In this paper, a series of pumping well tests were conducted in the MCA located in such area to investigate the dewatering-induced groundwater fluctuations and stratum deformation. In addition, a numerical method is proposed for the estimation of hydraulic parameter, and an empirical prediction method is developed for dewatering-induced ground settlement. Test results show that groundwater drawdowns and soil settlement can be observed not only in MCA but also in the aquifers underneath it. This indicates that there is a close hydraulic connection among each aquifer. Moreover, the distributions and development of soil settlement at various depths are parallel to those of groundwater drawdowns in most areas of the test site except the vicinity of pumping wells, where collapse-induced subsidence due to high-speed flow may occur. Furthermore, the largest deformation usually occurs at the top of the pumping aquifer instead of the ground surface, because the top layer is expanded due to the stress arch formed in it. Finally, the proposed methods are validated to be feasible according to the pumping well test results and can be employed to investigate the responses of groundwater fluctuations and stratum deformations due to dewatering in MCA.


Sign in / Sign up

Export Citation Format

Share Document