Revisiting Cognitive Dissonance and Memes-Derived Urban Simulation Models

Author(s):  
Juval Portugali
2018 ◽  
Vol 7 (10) ◽  
pp. 403 ◽  
Author(s):  
Yanlei Feng ◽  
Yi Qi

This paper introduces an urban growth simulation model applied to the full scope of China. The model uses a multicriteria decision analysis to calculate the land conversion probability and then integrates it with a cellular automata model. A nonlinear relationship is incorporated in to the model to interpret the impacts of different Land Use and Cover Change driving forces. The Analytical Hierarchical Process is also implemented to compute the variance between weights of different factors. Multiple sizes of neighborhood and different urban ratios in the model rules are tested, and a 5 × 5 neighborhood and an urban threshold of 0.33 are chosen. The study demonstrates the importance of spatial analysis on socioeconomic factors, population, and Gross Domestic Product in land use change simulation modeling. The model fills the gap between the purely economic theory simulation model and the geographic simulation model. The nationwide urban simulation is an example that addresses the lack of urban simulation studies in China and among large-scale simulation models.


Author(s):  
P. Jayasinghe ◽  
L.N. Kantakumar ◽  
V. Raghavan ◽  
G. Yonezawa

Availability of a variety of urban growth models make model selection to be an important factor in urban simulation studies. In this regard, a comparative evaluation of available urban growth models helps to choose a suitable model for the study area. Thus, we selected three open-source simulation models namely FUTURES, SLEUTH and MOLUSCE to compare in their simplest state to provide a guidance for selection of an urban growth model for Colombo. The urban extent maps of 1997, 2005, 2008, 2014 and 2019 derived from Landsat imageries were used in calibration and validation of models. Models were implemented with the minimum required data with default settings. The simulation results indicate that the estimated quantity of urban growth (148.91 km2) during 2008-2019 by FUTURES model is matching closely with observed urban growth (127.37 km2) during 2008-2019. On the other hand, the SLEUTH model showed an overestimation (250.56 km2) and MOLUSCE showed an underestimation (77.11 km2). Further, the spatial accuracy of urban growth simulation of SLEUTH (Figure of Merit = 0.26) is relatively better in comparison to FUTURES (0.20) and MOLUSCE (0.20). Considering the tradeoff between computational overheads and obtained results, FUTURES could be a good choice over SLEUTH and MOLUSCE, when these models implemented in their simplest form with minimum required datasets. As a future work, we propose the incorporation of exclusion factor for potential surface generation to mitigate the overestimation of urban areas in SLUETH.


2010 ◽  
Vol 37 (2) ◽  
pp. 265-283 ◽  
Author(s):  
Nina Schwarz ◽  
Dagmar Haase ◽  
Ralf Seppelt

Sign in / Sign up

Export Citation Format

Share Document