Study on Steam Turbine Fault Diagnosis of Fish-Swarm Optimized Probabilistic Neural Network Algorithm

Author(s):  
Jian-jun Xu ◽  
Chao Liu ◽  
Quan Zhou
Jurnal INFORM ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 61-64
Author(s):  
Mohammad Zoqi Sarwani ◽  
Dian Ahkam Sani

The Internet creates a new space where people can interact and communicate efficiently. Social media is one type of media used to interact on the internet. Facebook and Twitter are one of the social media. Many people are not aware of bringing their personal life into the public. So that unconsciously provides information about his personality. Big Five personality is one type of personality assessment method and is used as a reference in this study. The data used is the social media status from both Facebook and Twitter. Status has been taken from 50 social media users. Each user is taken as a text status. The results of tests performed using the Probabilistic Neural Network algorithm obtained an average accuracy score of 86.99% during the training process and 83.66% at the time of testing with a total of 30 training data and 20 test data.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Liang Hua ◽  
Yujian Qiang ◽  
Juping Gu ◽  
Ling Chen ◽  
Xinsong Zhang ◽  
...  

Automatic extraction of time-frequency spectral image of mechanical faults can be achieved and faults can be identified consequently when rotating machinery spectral image processing technology is applied to fault diagnosis, which is an advantage. Acquired mechanical vibration signals can be converted into color time-frequency spectrum images by the processing of pseudo Wigner-Ville distribution. Then a feature extraction method based on quaternion invariant moment was proposed, combining image processing technology and multiweight neural network technology. The paper adopted quaternion invariant moment feature extraction method and gray level-gradient cooccurrence matrix feature extraction method and combined them with geometric learning algorithm and probabilistic neural network algorithm, respectively, and compared the recognition rates of rolling bearing faults. The experimental results show that the recognition rates of quaternion invariant moment are higher than gray level-gradient cooccurrence matrix in the same recognition method. The recognition rates of geometric learning algorithm are higher than probabilistic neural network algorithm in the same feature extraction method. So the method based on quaternion invariant moment geometric learning and multiweight neural network is superior. What is more, this algorithm has preferable generalization performance under the condition of fewer samples, and it has practical value and acceptation on the field of fault diagnosis for rotating machinery as well.


Diagnostyka ◽  
2020 ◽  
Vol 21 (4) ◽  
pp. 79-86
Author(s):  
Changdong Wu ◽  
Hua Jiang ◽  
Ping Wang ◽  
Zhenli Deng

2019 ◽  
Vol 158 ◽  
pp. 1798-1803 ◽  
Author(s):  
Tao Xue ◽  
Xiaolong Wu ◽  
Yuanwu Xu ◽  
Suwen Jing ◽  
Zehua Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document