Field Plots and Crop Yields Under Innovative Methods of Carbon Sequestration in Soil

Author(s):  
Carlo Grignani ◽  
Francesco Alluvione ◽  
Chiara Bertora ◽  
Laura Zavattaro ◽  
Massimo Fagnano ◽  
...  
2005 ◽  
Vol 34 (1) ◽  
pp. 11-21 ◽  
Author(s):  
Alfred E. Hartemink

Plantation agriculture is more than 400 years old and contributes to the regional and national economies in many tropical countries. This paper reviews some of the main environmental issues related to plantation agriculture with perennial crops, including soil erosion, soil fertility decline, pollution, carbon sequestration and biodiversity. Soil erosion and soil fertility decline are of concern in some areas, but in most plantations these are being checked by cover crops and inorganic fertilizer applications. Few studies have been conducted on the issue of carbon sequestration under perennial plantation cropping. Reductions in deforestation yield much greater benefits for a reduction in CO2 emissions than expanding plantation agriculture. The biggest threat to biodiversity is the loss of habitat through expansion of the plantation area. Despite the environmental problems and concerns, this review has shown that crop yields of most perennial crops have increased over time due to improved crop husbandry including high-yielding cultivars and improved soil management. It is likely that more attention will be given to the environmental aspects of plantation cropping due to the increasing environmental awareness in tropical countries.


Forests ◽  
2014 ◽  
Vol 5 (5) ◽  
pp. 919-935 ◽  
Author(s):  
Peter Beets ◽  
Mark Kimberley ◽  
Graeme Oliver ◽  
Stephen Pearce

2015 ◽  
Vol 6 (2) ◽  
pp. 745-768 ◽  
Author(s):  
S. Olin ◽  
M. Lindeskog ◽  
T. A. M. Pugh ◽  
G. Schurgers ◽  
D. Wårlind ◽  
...  

Abstract. Croplands are vital ecosystems for human well-being and provide important ecosystem services such as crop yields, retention of nitrogen and carbon storage. On large (regional to global)-scale levels, assessment of how these different services will vary in space and time, especially in response to cropland management, are scarce. We explore cropland management alternatives and the effect these can have on future C and N pools and fluxes using the land-use-enabled dynamic vegetation model LPJ-GUESS (Lund–Potsdam–Jena General Ecosystem Simulator). Simulated crop production, cropland carbon storage, carbon sequestration and nitrogen leaching from croplands are evaluated and discussed. Compared to the version of LPJ-GUESS that does not include land-use dynamics, estimates of soil carbon stocks and nitrogen leaching from terrestrial to aquatic ecosystems were improved. Our model experiments allow us to investigate trade-offs between these ecosystem services that can be provided from agricultural fields. These trade-offs are evaluated for current land use and climate and further explored for future conditions within the two future climate change scenarios, RCP (Representative Concentration Pathway) 2.6 and 8.5. Our results show that the potential for carbon sequestration due to typical cropland management practices such as no-till management and cover crops proposed in previous studies is not realised, globally or over larger climatic regions. Our results highlight important considerations to be made when modelling C–N interactions in agricultural ecosystems under future environmental change and the effects these have on terrestrial biogeochemical cycles.


2021 ◽  
Vol 9 ◽  
Author(s):  
Vandit Vijay ◽  
Sowmya Shreedhar ◽  
Komalkant Adlak ◽  
Sachin Payyanad ◽  
Vandana Sreedharan ◽  
...  

Increasing pressure on farming systems due to rapid urbanization and population growth has severely affected soil health and fertility. The need to meet the growing food demands has also led to unsustainable farming practices with the intensive application of chemical fertilizers and pesticides, resulting in significant greenhouse gas emissions. Biochar, a multifunctional carbon material, is being actively explored globally for simultaneously addressing the concerns related to improving soil fertility and mitigating climate change. Reviews on biochar, however, mainly confined to lab-scale studies analyze biochar production and its characteristics, its effects on soil fertility, and carbon sequestration. The present review addresses this gap by focusing on biochar field trials to enhance the current understanding of its actual impact on the field, w.r.t. agriculture and climate change. The review presents an overview of the effects of biochar application as observed in field studies on soil health (soil’s physical, chemical, and biological properties), crop productivity, and its potential role in carbon sequestration. General trends from this review indicate that biochar application provides higher benefits in soil properties and crop yield in degraded tropical soils vis-a-vis the temperate regions. The results also reveal diverse observations in soil health properties and crop yields with biochar amendment as different studies consider different crops, biochar feedstocks, and local climatic and soil conditions. Furthermore, it has been observed that the effects of biochar application in lab-scale studies with controlled environments are not always distinctly witnessed in corresponding field-based studies and the effects are not always synchronous across different regions. Hence, there is a need for more data, especially from well-designed long-term field trials, to converge and validate the results on the effectiveness of biochar on diverse soil types and agro-climatic zones to improve crop productivity and mitigate climate change.


2015 ◽  
Vol 6 (1) ◽  
pp. 1047-1100 ◽  
Author(s):  
S. Olin ◽  
M. Lindeskog ◽  
T. A. M. Pugh ◽  
G. Schurgers ◽  
D. Wårlind ◽  
...  

Abstract. We explore cropland management alternatives and the effect these can have on future C and N pools and fluxes using the land use-enabled dynamic vegetation model LPJ-GUESS. Simulated crop production, cropland carbon storage, carbon sequestration and nitrogen leaching from croplands are evaluated and discussed. Compared to the version of LPJ-GUESS that does not include land use dynamics, estimates of soil carbon stocks and nitrogen leaching from terrestrial to aquatic ecosystems were improved. We explore trade-offs between important ecosystem services that can be provided from agricultural fields such as crop yields, retention of nitrogen and carbon storage. These trade-offs are evaluated for current land use and climate and further explored for future conditions within the two future climate change scenarios, RCP 2.6 and 8.5. Our results show that the potential for carbon sequestration due to typical cropland management practices such as no-till and cover-crops proposed in literature is not realised, globally or over larger climatic regions. Our results highlight important considerations to be made when modelling C–N interactions in agricultural ecosystems under future environmental change, and the effects these have on terrestrial biogeochemical cycles.


Sign in / Sign up

Export Citation Format

Share Document