2013 ◽  
Vol 58 (3) ◽  
pp. 871-875
Author(s):  
A. Herberg

Abstract This article outlines a methodology of modeling self-induced vibrations that occur in the course of machining of metal objects, i.e. when shaping casting patterns on CNC machining centers. The modeling process presented here is based on an algorithm that makes use of local model fuzzy-neural networks. The algorithm falls back on the advantages of fuzzy systems with Takagi-Sugeno-Kanga (TSK) consequences and neural networks with auxiliary modules that help optimize and shorten the time needed to identify the best possible network structure. The modeling of self-induced vibrations allows analyzing how the vibrations come into being. This in turn makes it possible to develop effective ways of eliminating these vibrations and, ultimately, designing a practical control system that would dispose of the vibrations altogether.


2019 ◽  
Vol 1 (1) ◽  
pp. 29-36
Author(s):  
Mariusz Pawlak ◽  
Janusz Buchta ◽  
Andrzej Oziemski

A diagnostic and control system for a turbine is presented. The influence of the turbine controller on regulation processes in the power system is described. Measured quantities have been characterized and methods for detecting errors have been determined. The paper presents the application of fuzzy neural networks (fuzzy-NNs) for diagnosing sensor faults in the control systems of a steam turbine. The structure of the fuzzy-NN model and the model’s method of learning, based on measurement data, are presented. Fuzzy-NNs are used to detect faults procedures. The fuzzy-NN models are created and verified.


Sign in / Sign up

Export Citation Format

Share Document