Chemical Vapor Synthesis of Nanocrystalline Oxides

Author(s):  
Ruzica Djenadic ◽  
Markus Winterer
2001 ◽  
Vol 84 (12) ◽  
pp. 2771-2776 ◽  
Author(s):  
Vladimir V. Srdić ◽  
Markus Winterer ◽  
Andreas Möller ◽  
G. Miehe ◽  
Horst Hahn

Small ◽  
2005 ◽  
Vol 1 (5) ◽  
pp. 540-552 ◽  
Author(s):  
Sebastian Polarz ◽  
Abhijit Roy ◽  
Michael Merz ◽  
Simon Halm ◽  
Detlef Schröder ◽  
...  

1999 ◽  
Vol 12 (1-4) ◽  
pp. 95-100 ◽  
Author(s):  
V.V. Srdic ◽  
M. Winterer ◽  
G. Miehe ◽  
H. Hahn

MRS Advances ◽  
2018 ◽  
Vol 3 (4) ◽  
pp. 213-218
Author(s):  
Alexander Levish ◽  
Markus Winterer

ABSTRACTControlling the oxidation state of iron and the crystal structure of iron containing compounds is the key to improved materials such as iron oxide nanoparticles for cancer treatment or heterogeneous catalysis. Iron oxides contain iron in different oxidation states and form different phases for one valence state (α-Fe3+2O2-3, β- Fe3+2O-32, etc.). Chemical vapor synthesis (CVS) allows the reproducible production of pure nanocrystals with narrow size distribution where particle formation and growth take place in the gas phase. Through the controlled variation of synthesis parameters CVS enables the synthesis of diverse iron oxide phases. In this study the energy for the CVS process is supplied by a hot wall furnace and a microwave plasma. The advantage of an plasma reactor as the first CVS stage is the fast and complete precursor decomposition at low temperatures. This results in a larger process window for the hot wall reactor in the second stage. The nanoparticles are examined regarding their structure, surface and valence by XRD and TEM.


1999 ◽  
Vol 86 (6) ◽  
pp. 3129-3133 ◽  
Author(s):  
A. Konrad ◽  
T. Fries ◽  
A. Gahn ◽  
F. Kummer ◽  
U. Herr ◽  
...  

2007 ◽  
Vol 27 (13-15) ◽  
pp. 4333-4337 ◽  
Author(s):  
Wei Jin ◽  
In-Kyum Lee ◽  
Alexander Kompch ◽  
Udo Dörfler ◽  
Markus Winterer

2007 ◽  
Vol 1056 ◽  
Author(s):  
Ruzica Djenadic ◽  
Sankhanilay Roy Chowdhury ◽  
Marina Spasova ◽  
Andreas Gondorf ◽  
Erdal Akyildiz ◽  
...  

ABSTRACTChemical Vapor Synthesis (CVS) is the conversion of molecular species into nanocrystalline particles by chemical reactions in a gas flow reactor. Pure anatase nanoparticles are generated in a hot wall reactor from titanium isopropoxide using different time-temperature-profiles. The time-temperature-profile (T(t)-profile) in the gas phase of the reactor has a profound influence on the particle characteristics such as particle microstructure and surface chemistry and, therefore, on the quality of the powder consisting of nanocrystalline particles. In this study a simple reaction-coagulation-sintering model (CVSSIN) was used to predict influence of the T(t)-profile on the powder characteristics. The as-synthesized anatase powders show a very high degree of crystallinity, primary particle of about 10 nm sizes and a low degree of agglomeration.


Sign in / Sign up

Export Citation Format

Share Document