Biorefinery Applications of Corynebacterium glutamicum

Author(s):  
Toru Jojima ◽  
Masayuki Inui ◽  
Hideaki Yukawa
2019 ◽  
Vol 476 (21) ◽  
pp. 3141-3159 ◽  
Author(s):  
Meiru Si ◽  
Can Chen ◽  
Zengfan Wei ◽  
Zhijin Gong ◽  
GuiZhi Li ◽  
...  

Abstract MarR (multiple antibiotic resistance regulator) proteins are a family of transcriptional regulators that is prevalent in Corynebacterium glutamicum. Understanding the physiological and biochemical function of MarR homologs in C. glutamicum has focused on cysteine oxidation-based redox-sensing and substrate metabolism-involving regulators. In this study, we characterized the stress-related ligand-binding functions of the C. glutamicum MarR-type regulator CarR (C. glutamicum antibiotic-responding regulator). We demonstrate that CarR negatively regulates the expression of the carR (ncgl2886)–uspA (ncgl2887) operon and the adjacent, oppositely oriented gene ncgl2885, encoding the hypothetical deacylase DecE. We also show that CarR directly activates transcription of the ncgl2882–ncgl2884 operon, encoding the peptidoglycan synthesis operon (PSO) located upstream of carR in the opposite orientation. The addition of stress-associated ligands such as penicillin and streptomycin induced carR, uspA, decE, and PSO expression in vivo, as well as attenuated binding of CarR to operator DNA in vitro. Importantly, stress response-induced up-regulation of carR, uspA, and PSO gene expression correlated with cell resistance to β-lactam antibiotics and aromatic compounds. Six highly conserved residues in CarR were found to strongly influence its ligand binding and transcriptional regulatory properties. Collectively, the results indicate that the ligand binding of CarR induces its dissociation from the carR–uspA promoter to derepress carR and uspA transcription. Ligand-free CarR also activates PSO expression, which in turn contributes to C. glutamicum stress resistance. The outcomes indicate that the stress response mechanism of CarR in C. glutamicum occurs via ligand-induced conformational changes to the protein, not via cysteine oxidation-based thiol modifications.


2019 ◽  
Vol 35 (6) ◽  
pp. 21-29
Author(s):  
T.E. Leonova ◽  
T.E. Shustikova ◽  
T.V. Gerasimova ◽  
Т.А. Ivankova ◽  
K.V. Sidorenko Sidorenko ◽  
...  

Thepsefdh_D221Q gene coding for a mutant formate dehydrogenase (PseFDG_D221Q) from Pseudomonas, which catalyzes the formate oxidation with the simultaneous formation of NADPH, has been expressed in the cells of lysine-producing Corynebacterium glutamicum strains. The psefdh_D221Q gene was introduced into С. glutamicum strains as part of an autonomous plasmid or was integrated into the chromosome with simultaneous inactivation of host formate dehydrogenase genes. It was shown that the С. glutamicum strains with NADP+ -dependent formate dehydrogenase have an increased level of L-lysine synthesis in the presence of formate, if their own formate dehydrogenase is inactivated. L-lysine, formate dehydrogenase, NADPH, Corynebacterium glutamicum The work was carried out using the equipment of the Multipurpose Scientific This work was carried out on the equipment of the Multipurpose Scientific Installation of «All-Russian Collection of Industrial Microorganisms», National Bio-Resource Center, NRC «Kurchatov Institute»- GosNIIgenetika. This work was financially supported by the Ministry of Education and Science of Russia (Unique Project Identifier - RFMEFI61017X0011).


ACS Omega ◽  
2021 ◽  
Vol 6 (15) ◽  
pp. 10160-10167
Author(s):  
Ming Lei ◽  
Xiwei Peng ◽  
Wenjun Sun ◽  
Di Zhang ◽  
Zhenyu Wang ◽  
...  

2021 ◽  
Vol 327 ◽  
pp. 124799
Author(s):  
Qi Sheng ◽  
Xiaoyu Wu ◽  
Yan Jiang ◽  
Zhimin Li ◽  
Fei Wang ◽  
...  

2021 ◽  
Vol 9 (6) ◽  
pp. 2523-2533
Author(s):  
Yu Jung Sohn ◽  
Minsoo Kang ◽  
Kei-Anne Baritugo ◽  
Jina Son ◽  
Kyoung Hee Kang ◽  
...  

2012 ◽  
Vol 58 (3) ◽  
pp. 278-286 ◽  
Author(s):  
Jae-Hyung Jo ◽  
Hye-Young Seol ◽  
Yun-Bom Lee ◽  
Min-Hong Kim ◽  
Hyung-Hwan Hyun ◽  
...  

The development of microbial strains for the enhanced production of α-ketoglutarate (α-KG) was investigated using a strain of Corynebacterium glutamicum that overproduces of l-glutamate, by disrupting three genes involved in the α-KG biosynthetic pathway. The pathways competing with the biosynthesis of α-KG were blocked by knocking out aceA (encoding isocitrate lyase, ICL), gdh (encoding glutamate dehydrogenase, l-gluDH), and gltB (encoding glutamate synthase or glutamate-2-oxoglutarate aminotransferase, GOGAT). The strain with aceA, gltB, and gdh disrupted showed reduced ICL activity and no GOGAT and l-gluDH activities, resulting in up to 16-fold more α-KG production than the control strain in flask culture. These results suggest that l-gluDH is the key enzyme in the conversion of α-KG to l-glutamate; therefore, prevention of this step could promote α-KG accumulation. The inactivation of ICL leads the carbon flow to α-KG by blocking the glyoxylate pathway. However, the disruption of gltB did not affect the biosynthesis of α-KG. Our results can be applied in the industrial production of α-KG by using C. glutamicum as producer.


2011 ◽  
Vol 154 (2-3) ◽  
pp. 171-178 ◽  
Author(s):  
Marcus Persicke ◽  
Jens Plassmeier ◽  
Heiko Neuweger ◽  
Christian Rückert ◽  
Alfred Pühler ◽  
...  

Fermentation ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 11
Author(s):  
Fernando Pérez-García ◽  
Arthur Burgardt ◽  
Dina R. Kallman ◽  
Volker F. Wendisch ◽  
Nadav Bar

Residual streams from lignocellulosic processes contain sugar mixtures of glucose, xylose, and mannose. Here, the industrial workhorse Corynebacterium glutamicum was explored as a research platform for the rational utilization of a multiple sugar substrate. The endogenous manA gene was overexpressed to enhance mannose utilization. The overexpression of the xylA gene from Xanthomonas campestris in combination with the endogenous xylB gene enabled xylose consumption by C. glutamicum. Furthermore, riboflavin production was triggered by overexpressing the sigH gene from C. glutamicum. The resulting strains were studied during batch fermentations in flasks and 2 L lab-scale bioreactors separately using glucose, mannose, xylose, and a mixture of these three sugars as a carbon source. The production of riboflavin and consumption of sugars were improved during fed-batch fermentation thanks to a dynamic inoculation strategy of manA overexpressing strain and xylAB overexpressing strain. The final riboflavin titer, yield, and volumetric productivity from the sugar mixture were 27 mg L−1, 0.52 mg g−1, and 0.25 mg L−1 h−1, respectively. It reached a 56% higher volumetric productivity with 45% less by-product formation compared with an equivalent process inoculated with a single strain overexpressing the genes xylAB and manA combined. The results indicate the advantages of dynamic multi strains processes for the conversion of sugar mixtures.


Sign in / Sign up

Export Citation Format

Share Document