Expression of the NADP+-Dependent Formate Dehydrogenase Gene from Pseudomonas Increases the Lysine Production in Corynebacterium glutamicum

2019 ◽  
Vol 35 (6) ◽  
pp. 21-29
Author(s):  
T.E. Leonova ◽  
T.E. Shustikova ◽  
T.V. Gerasimova ◽  
Т.А. Ivankova ◽  
K.V. Sidorenko Sidorenko ◽  
...  

Thepsefdh_D221Q gene coding for a mutant formate dehydrogenase (PseFDG_D221Q) from Pseudomonas, which catalyzes the formate oxidation with the simultaneous formation of NADPH, has been expressed in the cells of lysine-producing Corynebacterium glutamicum strains. The psefdh_D221Q gene was introduced into С. glutamicum strains as part of an autonomous plasmid or was integrated into the chromosome with simultaneous inactivation of host formate dehydrogenase genes. It was shown that the С. glutamicum strains with NADP+ -dependent formate dehydrogenase have an increased level of L-lysine synthesis in the presence of formate, if their own formate dehydrogenase is inactivated. L-lysine, formate dehydrogenase, NADPH, Corynebacterium glutamicum The work was carried out using the equipment of the Multipurpose Scientific This work was carried out on the equipment of the Multipurpose Scientific Installation of «All-Russian Collection of Industrial Microorganisms», National Bio-Resource Center, NRC «Kurchatov Institute»- GosNIIgenetika. This work was financially supported by the Ministry of Education and Science of Russia (Unique Project Identifier - RFMEFI61017X0011).

2020 ◽  
Vol 56 (8) ◽  
pp. 828-836
Author(s):  
L. E. Ryabchenko ◽  
T. E. Leonova ◽  
T. E. Shustikova ◽  
T. V. Gerasimova ◽  
T. A. Ivankova ◽  
...  

2016 ◽  
Vol 198 (8) ◽  
pp. 1337-1346 ◽  
Author(s):  
Aunica L. Kane ◽  
Evan D. Brutinel ◽  
Heena Joo ◽  
Rebecca Maysonet ◽  
Chelsey M. VanDrisse ◽  
...  

ABSTRACTShewanella oneidensisstrain MR-1 is a facultative anaerobe that thrives in redox-stratified environments due to its ability to utilize a wide array of terminal electron acceptors. Conversely, the electron donors utilized byS. oneidensisare more limited and include products of primary fermentation such as lactate, pyruvate, formate, and hydrogen. Lactate, pyruvate, and hydrogen metabolisms inS. oneidensishave been described previously, but little is known about the role of formate oxidation in the ecophysiology of these bacteria. Formate is produced byS. oneidensisthrough pyruvate formate lyase during anaerobic growth on carbon sources that enter metabolism at or above the level of pyruvate, and the genome contains three gene clusters predicted to encode three complete formate dehydrogenase complexes. To determine the contribution of each complex to formate metabolism, strains lacking one, two, or all three annotated formate dehydrogenase gene clusters were generated and examined for growth rates and yields on a variety of carbon sources. Here, we report that formate oxidation contributes to both the growth rate and yield ofS. oneidensisthrough the generation of proton motive force. Exogenous formate also greatly accelerated growth onN-acetylglucosamine, a carbon source normally utilized very slowly byS. oneidensisunder anaerobic conditions. Surprisingly, deletion of all three formate dehydrogenase gene clusters enabled growth ofS. oneidensisusing pyruvate in the absence of a terminal electron acceptor, a mode of growth never before observed in these bacteria. Our results demonstrate that formate oxidation is a fundamental strategy under anaerobic conditions for energy conservation inS. oneidensis.IMPORTANCEShewanellaspecies have garnered interest in biotechnology applications for their ability to respire extracellular terminal electron acceptors, such as insoluble iron oxides and electrodes. While much effort has gone into studying the proteins for extracellular electron transport, how electrons generated through the oxidation of organic carbon sources enter this pathway remains understudied. Here, we quantify the role of formate oxidation in the anaerobic physiology ofShewanella oneidensis. Formate oxidation contributes to both the growth rate and yield on a variety of carbon sources through the generation of proton motive force. Advances in our understanding of the anaerobic metabolism ofS. oneidensisare important for our ability to utilize and engineer this organism for applications in bioenergy, biocatalysis, and bioremediation.


Genetics ◽  
1990 ◽  
Vol 125 (4) ◽  
pp. 691-702 ◽  
Author(s):  
B L Berg ◽  
V Stewart

Abstract Formate oxidation coupled to nitrate reduction constitutes a major anaerobic respiratory pathway in Escherichia coli. This respiratory chain consists of formate dehydrogenase-N, quinone, and nitrate reductase. We have isolated a recombinant DNA clone that likely contains the structural genes, fdnGHI, for the three subunits of formate dehydrogenase-N. The fdnGHI clone produced proteins of 110, 32 and 20 kDa which correspond to the subunit sizes of purified formate dehydrogenase-N. Our analysis indicates that fdnGHI is organized as an operon. We mapped the fdn operon to 32 min on the E. coli genetic map, close to the genes for cryptic nitrate reductase (encoded by the narZ operon). Expression of phi(fdnG-lacZ) operon fusions was induced by anaerobiosis and nitrate. This induction required fnr+ and narL+, two regulatory genes whose products are also required for the anaerobic, nitrate-inducible activation of the nitrate reductase structural gene operon, narGHJI. We conclude that regulation of fdnGHI and narGHJI expression is mediated through common pathways.


2017 ◽  
Vol 40 (2) ◽  
pp. 383-391 ◽  
Author(s):  
Xiuling Shang ◽  
Xin Chai ◽  
Xuemei Lu ◽  
Yuan Li ◽  
Yun Zhang ◽  
...  

2013 ◽  
Vol 97 (16) ◽  
pp. 7165-7172 ◽  
Author(s):  
Noriko Adachi ◽  
Chihiro Takahashi ◽  
Naoko Ono-Murota ◽  
Rie Yamaguchi ◽  
Tsutomu Tanaka ◽  
...  

Author(s):  
Haifa Ahmed Al- Harbi

The aim of the this research is to uncover the reality of the learning resource centers in Saudi Arabia and the extent of their effectiveness in performing the role entrusted to them and to present a proposed vision to develop them in light of the vision of the Kingdom 2030. The researcher followed the descriptive descriptive approach to reach the reality of the learning resource centers in the Kingdom, identified the strengths, opportunities, and challenges of the current and future. The study revealed the importance of the Learning Resource Center in the process of teaching and learning and achieving the vision of the the Ministry of Education that has supported the learning resource centers with the equipment which helped to provide the services of the center at a good level, but to the present, it requires more support in terms of furniture and equipment, providing Internet service and updating digital and non- digital resources so as to increase the efficiency of work. Finaly, the researcher presented a number of recommendations and suggestions for the development of learning resource centers in light of the vision of the Kingdom 2030.    


2004 ◽  
Vol 70 (12) ◽  
pp. 7277-7287 ◽  
Author(s):  
Christoph Wittmann ◽  
Patrick Kiefer ◽  
Oskar Zelder

ABSTRACT Metabolic fluxes in the central metabolism were determined for lysine-producing Corynebacterium glutamicum ATCC 21526 with sucrose as a carbon source, providing an insight into molasses-based industrial production processes with this organism. For this purpose, 13C metabolic flux analysis with parallel studies on [1-13CFru]sucrose, [1-13CGlc]sucrose, and [13C6 Fru]sucrose was carried out. C. glutamicum directed 27.4% of sucrose toward extracellular lysine. The strain exhibited a relatively high flux of 55.7% (normalized to an uptake flux of hexose units of 100%) through the pentose phosphate pathway (PPP). The glucose monomer of sucrose was completely channeled into the PPP. After transient efflux, the fructose residue was mainly taken up by the fructose-specific phosphotransferase system (PTS) and entered glycolysis at the level of fructose-1,6-bisphosphate. Glucose-6-phosphate isomerase operated in the gluconeogenetic direction from fructose-6-phosphate to glucose-6-phosphate and supplied additional carbon (7.2%) from the fructose part of the substrate toward the PPP. This involved supply of fructose-6-phosphate from the fructose part of sucrose either by PTSMan or by fructose-1,6-bisphosphatase. C. glutamicum further exhibited a high tricarboxylic acid (TCA) cycle flux of 78.2%. Isocitrate dehydrogenase therefore significantly contributed to the total NADPH supply of 190%. The demands for lysine (110%) and anabolism (32%) were lower than the supply, resulting in an apparent NADPH excess. The high TCA cycle flux and the significant secretion of dihydroxyacetone and glycerol display interesting targets to be approached by genetic engineers for optimization of the strain investigated.


2011 ◽  
Vol 93 (6) ◽  
pp. 2493-2502 ◽  
Author(s):  
P. Peters-Wendisch ◽  
K. C. Stansen ◽  
S. Götker ◽  
V. F. Wendisch

Sign in / Sign up

Export Citation Format

Share Document