volumetric productivity
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 20)

H-INDEX

16
(FIVE YEARS 3)

FLORESTA ◽  
2022 ◽  
Vol 52 (1) ◽  
pp. 150
Author(s):  
José Wesley Lima Silva ◽  
José Antônio Aleixo da Silva ◽  
José Alves Tavares

The adaptation of Eucalyptus clones in the Chapada of Araripe, PE, Brazil was observed after implementing experiments with fast-growing forests. This region has a high demand for alternative energy sources due to the Gypsum Pole, basically maintaining its energy matrix from the exploitation of Caatinga vegetation. Therefore, as a way to increase the gains in volumetric productivity in planting Eucalyptus spp. clones, it is important to understand which spacing levels provide the best competition between individuals. Thus, the objective of this study was to evaluate if the volumetric productivity of Eucalyptus spp. clones is affected by different spacing levels in stands implanted under severe weather conditions in Chapada of Araripe, PE, Brazil. The experiment was carried out at the Experimental Station of the Pernambuco Agronomic Institute (IPA) in the municipality of Araripina, PE, Brazil. Three Eucalyptus clones (C11, C39 and C41) with five spacing levels (2 m x 1 m, 2 m x 2 m, 3 m x 2 m, 3 m x 3 m and 4 m x 2 m) were arranged in a completely randomized design with factorial arrangement (3 x 5). The survival rate of the experiment was higher than 94%, even under conditions of water stress. The highest volume productivity was obtained with the C39 clone in the 2 m x 1 m spatial arrangement. The spatial arrangement strongly influences productivity. Even with the severe drought condition regulating productivity, the C39 clone showed MAI values of 15.92 m3 ha-1 year-1.


Fuel ◽  
2022 ◽  
Vol 308 ◽  
pp. 121984
Author(s):  
Ruplappara Sharath Kumar ◽  
Pritam Singh ◽  
Sanjoy Ghosh

2021 ◽  
Vol 18 (22) ◽  
pp. 453
Author(s):  
Azila Adnan ◽  
Giridhar Nair ◽  
Mark Lay ◽  
Janis Swan

Bacterial cellulose (BC) is an abundant polysaccharide, which is secreted by several genera of bacteria. It has remarkable characteristics, which include high purity, high tensile strength, high biocompatibility and non-toxic. The main feature that differentiates BC and plant cellulose (PC) is the absence of contaminants such as lignin, hemicellulose and pectin. However, the main drawbacks in producing BC are low yield and expensive carbon source. Due to that, this study was carried out to enhance BC volumetric productivity in fed-batch operation mode using glycerol as a carbon source. BC was produced in fill-and-draw and pulse-feed fed-batch cultures of Gluconacetobacter xylinus DSM 46604 in a 3-L bench-top bioreactor. The fed-batch fermentation trials were conducted in agitated and aerobic conditions at 30 ºC. For fill-and-draw fed-batch culture, a total of 24.2 g/L of BC accumulated in the bioreactor after 9 days, which corresponded to a yield and productivity of 0.2 g/g and 2.69 g/L/day, respectively. Pulse-feed fed-batch fermentation resulted in a yield and volumetric productivity of 0.38 g/g and 2.71 g/L/day, respectively. The pulse-feed fed-batch culture proved to be a better fermentation system for utilizing glycerol, which is a low-cost and abundant carbon source. HIGHLIGHTS Komagataeibacter species, which were formerly known as Acetobacter or Gluconacetobacter is one of the Gram-negative BC producers that secretes a large quantity of BC microfibrils extracellularly One of the main challenges in bacterial cellulose (BC) production is low productivity and high processing cost As fed-batch fermentation is one of the operation modes in bioprocess that can control the microbial growth rate, this operation mode is conducted to enhance the yield of BC, substrate consumption and also volumetric productivity Fill-and-draw and pulse feed fed-batch culture were conducted to enhance yield and volumetric productivity. The pulse-feed fed-batch culture resulted to be a favorable operation mode for utilizing glycerol, which is a low-cost and abundant carbon source GRAPHICAL ABSTRACT


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Carina Prell ◽  
Tobias Busche ◽  
Christian Rückert ◽  
Lea Nolte ◽  
Christoph Brandenbusch ◽  
...  

Abstract Background The demand for biobased polymers is increasing steadily worldwide. Microbial hosts for production of their monomeric precursors such as glutarate are developed. To meet the market demand, production hosts have to be improved constantly with respect to product titers and yields, but also shortening bioprocess duration is important. Results In this study, adaptive laboratory evolution was used to improve a C. glutamicum strain engineered for production of the C5-dicarboxylic acid glutarate by flux enforcement. Deletion of the l-glutamic acid dehydrogenase gene gdh coupled growth to glutarate production since two transaminases in the glutarate pathway are crucial for nitrogen assimilation. The hypothesis that strains selected for faster glutarate-coupled growth by adaptive laboratory evolution show improved glutarate production was tested. A serial dilution growth experiment allowed isolating faster growing mutants with growth rates increasing from 0.10 h−1 by the parental strain to 0.17 h−1 by the fastest mutant. Indeed, the fastest growing mutant produced glutarate with a twofold higher volumetric productivity of 0.18 g L−1 h−1 than the parental strain. Genome sequencing of the evolved strain revealed candidate mutations for improved production. Reverse genetic engineering revealed that an amino acid exchange in the large subunit of l-glutamic acid-2-oxoglutarate aminotransferase was causal for accelerated glutarate production and its beneficial effect was dependent on flux enforcement due to deletion of gdh. Performance of the evolved mutant was stable at the 2 L bioreactor-scale operated in batch and fed-batch mode in a mineral salts medium and reached a titer of 22.7 g L−1, a yield of 0.23 g g−1 and a volumetric productivity of 0.35 g L−1 h−1. Reactive extraction of glutarate directly from the fermentation broth was optimized leading to yields of 58% and 99% in the reactive extraction and reactive re-extraction step, respectively. The fermentation medium was adapted according to the downstream processing results. Conclusion Flux enforcement to couple growth to operation of a product biosynthesis pathway provides a basis to select strains growing and producing faster by adaptive laboratory evolution. After identifying candidate mutations by genome sequencing causal mutations can be identified by reverse genetics. As exemplified here for glutarate production by C. glutamicum, this approach allowed deducing rational metabolic engineering strategies.


2021 ◽  
Vol 9 (4) ◽  
pp. 824
Author(s):  
Anastasia Kerbs ◽  
Lynn Schwardmann ◽  
Melanie Mindt ◽  
Volker F. Wendisch

N-alkylated amino acids occur widely in nature and can also be found in bioactive secondary metabolites such as the glycopeptide antibiotic vancomycin and the immunosuppressant cyclosporine A. To meet the demand for N-alkylated amino acids, they are currently produced chemically; however, these approaches often lack enantiopurity, show low product yields and require toxic reagents. Fermentative routes to N-alkylated amino acids like N-methyl-l-alanine or N-methylantranilate, a precursor of acridone alkaloids, have been established using engineered Corynebacterium glutamicum, which has been used for the industrial production of amino acids for decades. Here, we describe metabolic engineering of C. glutamicum for de novo production of N-methylphenylalanine based on reductive methylamination of phenylpyruvate. Pseudomonas putida Δ-1-piperideine-2-carboxylate reductase DpkA containing the amino acid exchanges P262A and M141L showed comparable catalytic efficiencies with phenylpyruvate and pyruvate, whereas the wild-type enzyme preferred the latter substrate over the former. Deletion of the anthranilate synthase genes trpEG and of the genes encoding branched-chain amino acid aminotransferase IlvE and phenylalanine aminotransferase AroT in a strain engineered to overproduce anthranilate abolished biosynthesis of l-tryptophan and l-phenylalanine to accumulate phenylpyruvate. Upon heterologous expression of DpkAP262A,M141L, N-methylphenylalanine production resulted upon addition of monomethylamine to the medium. In glucose-based minimal medium, an N-methylphenylalanine titer of 0.73 ± 0.05 g L−1, a volumetric productivity of 0.01 g L−1 h−1 and a yield of 0.052 g g−1 glucose were reached. When xylose isomerase gene xylA from Xanthomonas campestris and the endogenous xylulokinase gene xylB were expressed in addition, xylose as sole carbon source supported production of N-methylphenylalanine to a titer of 0.6 ± 0.04 g L−1 with a volumetric productivity of 0.008 g L−1 h−1 and a yield of 0.05 g g−1 xylose. Thus, a fermentative route to sustainable production of N-methylphenylalanine by recombinant C. glutamicum has been established.


2021 ◽  
Vol 58 (6A) ◽  
pp. 299
Author(s):  
Tuan Anh Pham ◽  
Hoang Thi Ngoc Trang ◽  
Phung Thi Thuy ◽  
To Kim Anh

β-carotene known as an antioxidant, immunostimulant, provitamin A and natural colour is a popular additive used in food, cosmetics, and animal feed. Microbial β -carotene currently attracts attention thanks to its short production time and controllable process in comparing to the plant source. This study investigates the influences of the factors that enhance the accumulation of b-carotene in yeast strain Rhodotorula taiwanensis CT1. The addition of stressors including ethanol (0.2%), hydrogen peroxide (10mM) and NaCl (1M) to the 48h CT1 cultures improved the intracellular b-carotene to 2.2; 2.05 and 1.35 folds, respectively. Volumetric productivity of CT1 increased respectively 2.1; 2.0 and 1.1 folds.  As a metabolism regulator, citric acid (1%) added into 48h CT1 culture had a positive effect on intracellular b-carotene in CT1, resulted in its increase 1.78 folds. The highest β-carotene in CT1 was obtained when 1% Tween 80 was added in the culture: The intracellular b-carotene reached 337.56 ± 1.30 µg/g dry biomass, increased 2.84 folds; volumetric productivity achieved 15.38 ± 0.30 mg/L, increased 2.64 folds. However, the influence of addition time and appropriate concentration of study factors remained undetermined and need to be deeply investigated in further study.


Author(s):  
Elizabeth Bodie ◽  
Aleksandra Virag ◽  
Robert J Pratt ◽  
Nicholas Leiva ◽  
Michael Ward ◽  
...  

Abstract Morphological mutants of Trichoderma reesei were isolated following chemical or insertional mutagenesis. The mutant strains were shown to have reduced viscosity under industrially-relevant fermentation conditions and to have maintained high specific productivity of secreted protein. This allowed higher biomass concentration to be maintained during the production phase and, consequently, increased volumetric productivity of secreted protein. The causative mutations were traced to four individual genes (designated sfb3, ssb7, seb1 and mpg1). We showed that two of the morphological mutations could be combined in a single strain to further reduce viscosity and enable a 100 per cent increase in volumetric productivity.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Kira Küsters ◽  
Martina Pohl ◽  
Ulrich Krauss ◽  
Gizem Ölçücü ◽  
Sandor Albert ◽  
...  

Abstract Background In recent years, the production of inclusion bodies that retained substantial catalytic activity was demonstrated. These catalytically active inclusion bodies (CatIBs) were formed by genetic fusion of an aggregation inducing tag to a gene of interest via short linker polypeptides and overproduction of the resulting gene fusion in Escherichia coli. The resulting CatIBs are known for their high stability, easy and cost efficient production, and recyclability and thus provide an interesting alternative to conventionally immobilized enzymes. Results Here, we present the construction and characterization of a CatIB set of the lysine decarboxylase from Escherichia coli (EcLDCc), constructed via Golden Gate Assembly. A total of ten EcLDCc variants consisting of combinations of two linker and five aggregation inducing tag sequences were generated. A flexible Serine/Glycine (SG)- as well as a rigid Proline/Threonine (PT)-Linker were tested in combination with the artificial peptides (18AWT, L6KD and GFIL8) or the coiled-coil domains (TDoT and 3HAMP) as aggregation inducing tags. The linkers were fused to the C-terminus of the EcLDCc to form a linkage between the enzyme and the aggregation inducing tags. Comprehensive morphology and enzymatic activity analyses were performed for the ten EcLDCc-CatIB variants and a wild type EcLDCc control to identify the CatIB variant with the highest activity for the decarboxylation of l-lysine to 1,5-diaminopentane. Interestingly, all of the CatIB variants possessed at least some activity, whilst most of the combinations with the rigid PT-Linker showed the highest conversion rates. EcLDCc-PT-L6KD was identified as the best of all variants allowing a volumetric productivity of 457 g L− 1 d− 1 and a specific volumetric productivity of 256 g L− 1 d− 1 gCatIB−1. Noteworthy, wild type EcLDCc, without specific aggregation inducing tags, also partially formed CatIBs, which, however showed lower activity compared to most of the newly constructed CatIB variants (volumetric productivity: 219 g L− 1 d− 1, specific volumetric activity: 106 g L− 1 d− 1 gCatIB− 1). Furthermore, we demonstrate that microscopic analysis can serve as a tool to find CatIB producing strains and thus allow for prescreening at an early stage to save time and resources. Conclusions Our results clearly show that the choice of linker and aggregation inducing tag has a strong influence on the morphology and the enzymatic activity of the CatIBs. Strikingly, the linker had the most pronounced influence on these characteristics.


Fermentation ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 11
Author(s):  
Fernando Pérez-García ◽  
Arthur Burgardt ◽  
Dina R. Kallman ◽  
Volker F. Wendisch ◽  
Nadav Bar

Residual streams from lignocellulosic processes contain sugar mixtures of glucose, xylose, and mannose. Here, the industrial workhorse Corynebacterium glutamicum was explored as a research platform for the rational utilization of a multiple sugar substrate. The endogenous manA gene was overexpressed to enhance mannose utilization. The overexpression of the xylA gene from Xanthomonas campestris in combination with the endogenous xylB gene enabled xylose consumption by C. glutamicum. Furthermore, riboflavin production was triggered by overexpressing the sigH gene from C. glutamicum. The resulting strains were studied during batch fermentations in flasks and 2 L lab-scale bioreactors separately using glucose, mannose, xylose, and a mixture of these three sugars as a carbon source. The production of riboflavin and consumption of sugars were improved during fed-batch fermentation thanks to a dynamic inoculation strategy of manA overexpressing strain and xylAB overexpressing strain. The final riboflavin titer, yield, and volumetric productivity from the sugar mixture were 27 mg L−1, 0.52 mg g−1, and 0.25 mg L−1 h−1, respectively. It reached a 56% higher volumetric productivity with 45% less by-product formation compared with an equivalent process inoculated with a single strain overexpressing the genes xylAB and manA combined. The results indicate the advantages of dynamic multi strains processes for the conversion of sugar mixtures.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Ahmed Zahoor ◽  
Katrin Messerschmidt ◽  
Simon Boecker ◽  
Steffen Klamt

Abstract Background Enforced ATP wasting has been recognized as a promising metabolic engineering strategy to enhance the microbial production of metabolites that are coupled to ATP generation. It also appears to be a suitable approach to improve production of ethanol by Saccharomyces cerevisiae. In the present study, we constructed different S. cerevisiae strains with heterologous expression of genes of the ATP-hydrolyzing F1-part of the ATPase enzyme to induce enforced ATP wasting and quantify the resulting effect on biomass and ethanol formation. Results In contrast to genomic integration, we found that episomal expression of the αβγ subunits of the F1-ATPase genes of Escherichia coli in S. cerevisiae resulted in significantly increased ATPase activity, while neither genomic integration nor episomal expression of the β subunit from Trichoderma reesei could enhance ATPase activity. When grown in minimal medium under anaerobic growth-coupled conditions, the strains expressing E. coli’s F1-ATPase genes showed significantly improved ethanol yield (increase of 10% compared to the control strain). However, elevated product formation reduces biomass formation and, therefore, volumetric productivity. We demonstrate that this negative effect can be overcome under growth-decoupled (nitrogen-starved) operation with high and constant biomass concentration. Under these conditions, which mimic the second (production) phase of a two-stage fermentation process, the ATPase-expressing strains showed significant improvement in volumetric productivity (up to 111%) compared to the control strain. Conclusions Our study shows that expression of genes of the F1-portion of E. coli’s ATPase induces ATPase activity in S. cerevisiae and can be a promising way to improve ethanol production. This ATP-wasting strategy can be easily applied to other metabolites of interest, whose formation is coupled to ATP generation.


Sign in / Sign up

Export Citation Format

Share Document