2021 ◽  
Vol 20 (3) ◽  
Author(s):  
Ying-Jie Zhang ◽  
Xiang Lu ◽  
Hai-Feng Lang ◽  
Zhong-Xiao Man ◽  
Yun-Jie Xia ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1690
Author(s):  
Teague Tomesh ◽  
Pranav Gokhale ◽  
Eric R. Anschuetz ◽  
Frederic T. Chong

Many quantum algorithms for machine learning require access to classical data in superposition. However, for many natural data sets and algorithms, the overhead required to load the data set in superposition can erase any potential quantum speedup over classical algorithms. Recent work by Harrow introduces a new paradigm in hybrid quantum-classical computing to address this issue, relying on coresets to minimize the data loading overhead of quantum algorithms. We investigated using this paradigm to perform k-means clustering on near-term quantum computers, by casting it as a QAOA optimization instance over a small coreset. We used numerical simulations to compare the performance of this approach to classical k-means clustering. We were able to find data sets with which coresets work well relative to random sampling and where QAOA could potentially outperform standard k-means on a coreset. However, finding data sets where both coresets and QAOA work well—which is necessary for a quantum advantage over k-means on the entire data set—appears to be challenging.


2018 ◽  
Vol 16 (08) ◽  
pp. 1840005 ◽  
Author(s):  
Priscila G. M. dos Santos ◽  
Rodrigo S. Sousa ◽  
Ismael C. S. Araujo ◽  
Adenilton J. da Silva

This paper proposes a quantum-classical algorithm to evaluate and select classical artificial neural networks architectures. The proposed algorithm is based on a probabilistic quantum memory (PQM) and the possibility to train artificial neural networks (ANN) in superposition. We obtain an exponential quantum speedup in the evaluation of neural networks. We also verify experimentally through a reduced experimental analysis that the proposed algorithm can be used to select near-optimal neural networks.


2014 ◽  
Vol 4 (3) ◽  
Author(s):  
Giuseppe Davide Paparo ◽  
Vedran Dunjko ◽  
Adi Makmal ◽  
Miguel Angel Martin-Delgado ◽  
Hans J. Briegel

2015 ◽  
Vol 92 (4) ◽  
Author(s):  
Itay Hen ◽  
Joshua Job ◽  
Tameem Albash ◽  
Troels F. Rønnow ◽  
Matthias Troyer ◽  
...  
Keyword(s):  

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Giulio Chiribella ◽  
Daniel Ebler
Keyword(s):  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Bahram Ahansaz ◽  
Abbas Ektesabi

Abstract In this paper, we investigate the relationship between the quantum speedup, non-Markovianity and formation of a system-environment bound state. Previous results show a monotonic relation between these three such that providing bound states with more negative energy can lead to a higher degree of non-Markovianity, and hence to a greater speed of quantum evolution. By studying dynamics of a dissipative two-level system or a V-type three-level system, when similar and additional systems are present, we reveal that the quantum speedup is exclusively related to the formation of the system-environment bound state, while the non-Markovian effect of the system dynamics is neither necessary nor sufficient to speed up the quantum evolution. On the other hand, it is shown that only the formation of the system-environment bound state plays a decisive role in the acceleration of the quantum evolution.


2020 ◽  
Vol 19 (2) ◽  
Author(s):  
Yohichi Suzuki ◽  
Shumpei Uno ◽  
Rudy Raymond ◽  
Tomoki Tanaka ◽  
Tamiya Onodera ◽  
...  

AbstractThis paper focuses on the quantum amplitude estimation algorithm, which is a core subroutine in quantum computation for various applications. The conventional approach for amplitude estimation is to use the phase estimation algorithm, which consists of many controlled amplification operations followed by a quantum Fourier transform. However, the whole procedure is hard to implement with current and near-term quantum computers. In this paper, we propose a quantum amplitude estimation algorithm without the use of expensive controlled operations; the key idea is to utilize the maximum likelihood estimation based on the combined measurement data produced from quantum circuits with different numbers of amplitude amplification operations. Numerical simulations we conducted demonstrate that our algorithm asymptotically achieves nearly the optimal quantum speedup with a reasonable circuit length.


Sign in / Sign up

Export Citation Format

Share Document