scholarly journals An Optimization Model for Advanced Biofuel Production Based on Bio-oil Gasification

Author(s):  
Qi Li ◽  
Guiping Hu
2021 ◽  
Vol 6 (1) ◽  
pp. 141-158
Author(s):  
R.R. Dirgarini J.N. Subagyono ◽  
Ying Qi ◽  
Alan L. Chaffee ◽  
Rudianto Amirta ◽  
Marc Marshall

Py-GC/MS analysis of six different species of fast growing Macaranga wood has been studied. Flash pyrolysis was conducted at different temperatures (250-850 oC) under a flow of helium followed by GC/MS analysis of the products. The total pyrolysis yields of the six different species of Macaranga were mostly between 40 and 90% within the range of pyrolysis temperature applied.  Pyrolysis of the woody biomass produced compounds which are mostly derived from thermal degradation or volatilization of lignin and cellulose/hemicellulose, the original major constituents of the biomass. The Py-GC/MS technique indicated that M. gigantea was the most potential species for biofuel production and the optimum pyrolysis temperature to produce high yields of bio-oil was 450 oC.


2018 ◽  
Vol 37 (2) ◽  
pp. 157-167 ◽  
Author(s):  
Ismail Cem Kantarli ◽  
Stylianos D Stefanidis ◽  
Konstantinos G Kalogiannis ◽  
Angelos A Lappas

The objective of this study was to examine the potential of poultry wastes to be used as feedstock in non-catalytic and catalytic fast pyrolysis processes, which is a continuation of our previous research on their conversion into biofuel via slow pyrolysis and hydrothermal conversion. Both poultry meal and poultry litter were examined, initially in a fixed bed bench-scale reactor using ZSM-5 and MgO as catalysts. Pyrolysis of poultry meal yielded high amounts of bio-oil, while pyrolysis of poultry litter yielded high amounts of solid residue owing to its high ash content. MgO was found to be more effective for the deoxygenation of bio-oil and reduction of undesirable compounds, by converting mainly the acids in the pyrolysis vapours of poultry meal into aliphatic hydrocarbons. ZSM-5 favoured the formation of both aromatic compounds and undesirable nitrogenous compounds. Overall, all bio-oil samples from the pyrolysis of poultry wastes contained relatively high amounts of nitrogen compared with bio-oils from lignocellulosic biomass, ca. 9 wt.% in the case of poultry meal and ca. 5–8 wt.% in the case of poultry litter. This was attributed to the high nitrogen content of the poultry wastes, unlike that of lignocellulosic biomass. Poultry meal yielded the highest amount of bio-oil and was selected as optimum feedstock to be scaled-up in a semi-pilot scale fluidised bed biomass pyrolysis unit with the ZSM-5 catalyst. Pyrolysis in the fluidised bed reactor was more efficient for deoxygenation of the bio-oil vapours, as evidenced from the lower oxygen content of the bio-oil.


Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 79
Author(s):  
Muhammad Usman Hanif ◽  
Mohammed Zwawi ◽  
Sergio C. Capareda ◽  
Hamid Iqbal ◽  
Mohammed Algarni ◽  
...  

Pyrolysis of anaerobically digested sludge can serve as an efficient biomass for biofuel production. Pyrolysis produces products like char, bio-oil, and combustible gases by thermochemical conversion process. It can be used for sludge treatment that decreases sludge disposal problems. Sludge produced from anaerobic co-digestion (microalgae, cow dung, and paper) waste has high carbon and hydrogen content. We investigated the candidacy of the anaerobic sludge having high heating value (HHV) of 20.53 MJ/kg as a reliable biomass for biofuels production. The process of pyrolysis was optimized with different temperatures (400, 500, and 600 °C) to produce high quantity and improved quality of the products, mainly bio-oil, char, and gas. The results revealed that with the increase in pyrolysis temperature the quantity of char decreased (81% to 55%), bio-oil increased (3% to 7%), and gas increased (2% to 5%). The HHV of char (19.2 MJ/kg), bio-oil (28.1 MJ/kg), and gas (18.1 MJ/kg) were predominantly affected by the amount of fixed carbon, hydrocarbons, and volatile substance, respectively. The study confirmed that the anaerobic sludge is a promising biomass for biofuel production and pyrolysis is an efficient method for its safe disposal.


2020 ◽  
Vol 34 (7) ◽  
pp. 7915-7928 ◽  
Author(s):  
Chun Ho Lam ◽  
Wei Deng ◽  
Lin Lang ◽  
Xin Jin ◽  
Xun Hu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document