Intracerebral Grafts of Dopaminergic Neurons: A Discussion of Their Functional Effects and Mechanisms of Action

Author(s):  
J. P. Herman ◽  
K. Choulli ◽  
N. Abrous ◽  
M. Le Moal
2021 ◽  
Vol 17 (1) ◽  
pp. 232-237
Author(s):  
Ali Esmail Al-Snafi

Parkinsonʼs disease is a progressive neurodegenerative dysfunction characterized by the loss of dopaminergic neurons of the nigrostriatal system. Dopamine is important to maintain normal movement patterns. The cardinal physical signs of the disease are distal resting tremor, rigidity, bradykinesia, and asymmetric onset. Treatment aims to improve these motor symptoms. Many medicinal plants possessed Parkinsonian effects by different mechanisms, included inhibition of α-synuclein condensation, reduction of oxidative stress and neuro-inflammation, increase of dopaminergic neurons survival, blockade of the adenosine A2A receptor and regulation of molecular pathways involved in neuronal survival such as MAPK, Nrf2, and NF-κB, thus exerted neuroprotective actions. In the present review, we highlight the medicinal plants with potential anti-Parkinsonian effects with discussing the mechanisms of their beneficial effects.


2003 ◽  
Vol 19 (3) ◽  
pp. 164-174 ◽  
Author(s):  
Stephen N. Haynes ◽  
Andrew E. Williams

Summary: We review the rationale for behavioral clinical case formulations and emphasize the role of the functional analysis in the design of individualized treatments. Standardized treatments may not be optimally effective for clients who have multiple behavior problems. These problems can affect each other in complex ways and each behavior problem can be influenced by multiple, interacting causal variables. The mechanisms of action of standardized treatments may not always address the most important causal variables for a client's behavior problems. The functional analysis integrates judgments about the client's behavior problems, important causal variables, and functional relations among variables. The functional analysis aids treatment decisions by helping the clinician estimate the relative magnitude of effect of each causal variable on the client's behavior problems, so that the most effective treatments can be selected. The parameters of, and issues associated with, a functional analysis and Functional Analytic Clinical Case Models (FACCM) are illustrated with a clinical case. The task of selecting the best treatment for a client is complicated because treatments differ in their level of specificity and have unequally weighted mechanisms of action. Further, a treatment's mechanism of action is often unknown.


Author(s):  
Joe L. Martinez ◽  
Patricia H. Janak ◽  
Susan B. Weinberger ◽  
Gery Schulteis

Author(s):  
Pier Vincenzo Piazza ◽  
◽  
Michela Marinelli ◽  
Francoise Rouge-Pont ◽  
Véronique Deroche ◽  
...  

Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
CBS Lau ◽  
VKM Lau ◽  
CL Liu ◽  
PKK Lai ◽  
JCW Tam ◽  
...  

Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381 ◽  
Author(s):  
B Ovalle-Magallanes ◽  
A Madariaga-Mazón ◽  
A Navarrete ◽  
R Mata

1979 ◽  
Author(s):  
L Miles ◽  
J Burnier ◽  
M Verlander ◽  
M Goodman ◽  
A Kleiss ◽  
...  

Flu-HPA is one of a series of flufenamic acid derivations that enhances plasminogen-dependent clot lysis in vitro. Studies of possible mechanisms of action of Flu-HPA were undertaken. The influence of Flu-HPA on the inhibition of purified plasmin by purified PI was studied. PI activity was assessed by its inhibition of the clevage of the tripeptide S-2251 (H-D-Val-Leu-Lys-pNA) by plasmin. Flu-HPA was dissolved in DMF or in methonol and preincubated with PI before addition of plasmin. At Flu-HPA concentrations greater than 1mM and up to 60mM, the inhibitory activity of PI was totally lost. The inhibitory effect of normal human plasma on plasmin was also completely abolished at concentrations of Flu-HPA between 2.5 and 40mM. The effect of Flu-HPA on the inhibition of purified plasma kallikrein by purified CI-Inh was also studied. CI-Inh activity was measured by its inhibition of cleavage of the tripeptide Bz-Pro-Phe-Arg-pNA by kallikrein. When Flu-HPA, dissolved in DMF or in methonol, was preincubated with CI-Inh, a concentration dependent inhibition of CI-Inh activity was observed. CI-Inh activity was abolished by concentrations of Flu-HPA greater than 1mM. Flu-HPA also inhibited the activity of CI-Inh on purified Factor XIIa. These observations suggest that this flufenamic acid derivative may enhance fibrinolysis not only by inhibiting PI activity but also by decreasing the inactivation of plasminogen activators by CI-Inh.


Planta Medica ◽  
2007 ◽  
Vol 73 (09) ◽  
Author(s):  
D Krüger ◽  
S Wagner ◽  
CW Hann von Weyhern ◽  
F Zeller ◽  
O Kelber ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document