Optimization of Inductive Coupling between Qbit Rings

Author(s):  
Christoph Kerner ◽  
Wim Magnus ◽  
Wim Schoenmaker ◽  
Chris Van Haesendonck
Keyword(s):  
2008 ◽  
Vol 128 (10) ◽  
pp. 615-618 ◽  
Author(s):  
Takeshi Kitajima ◽  
Akihiro Kubota ◽  
Toshiki Nakano

Minerals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 769 ◽  
Author(s):  
Fouzan A. Alfouzan ◽  
Abdulrahman M. Alotaibi ◽  
Leif H. Cox ◽  
Michael S. Zhdanov

The Saudi Arabian Glass Earth Pilot Project is a geophysical exploration program to explore the upper crust of the Kingdom for minerals, groundwater, and geothermal resources as well as strictly academic investigations. The project began with over 8000 km2 of green-field area. Airborne geophysics including electromagnetic (EM), magnetics, and gravity were used to develop several high priority targets for ground follow-up. Based on the results of airborne survey, a spectral induced polarization (SIP) survey was completed over one of the prospective targets. The field data were collected with a distributed array system, which has the potential for strong inductive coupling. This was examined in a synthetic study, and it was determined that with the geometries and conductivities in the field survey, the inductive coupling effect may be visible in the data. In this study, we also confirmed that time domain is vastly superior to frequency domain for avoiding inductive coupling, that measuring decays from 50 ms to 2 s allow discrimination of time constants from 1 ms to 5 s, and the relaxation parameter C is strongly coupled to intrinsic chargeability. We developed a method to fully include all 3D EM effects in the inversion of induced polarization (IP) data. The field SIP data were inverted using the generalized effective-medium theory of induced polarization (GEMTIP) in conjunction with an integral equation-based modeling and inversion methods. These methods can replicate all inductive coupling and EM effects, which removes one significant barrier to inversion of large bandwidth spectral IP data. The results of this inversion were interpreted and compared with results of drill hole set up in the survey area. The drill hole intersected significant mineralization which is currently being further investigated. The project can be considered a technical success, validating the methods and effective-medium inversion technique used for the project.


Author(s):  
Li-Chung Hsu ◽  
Junichiro Kadomoto ◽  
So Hasegawa ◽  
Atsutake Kosuge ◽  
Yasuhiro Take ◽  
...  

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Philip Schmidt ◽  
Mohammad T. Amawi ◽  
Stefan Pogorzalek ◽  
Frank Deppe ◽  
Achim Marx ◽  
...  

AbstractLight-matter interaction in optomechanical systems is the foundation for ultra-sensitive detection schemes as well as the generation of phononic and photonic quantum states. Electromechanical systems realize this optomechanical interaction in the microwave regime. In this context, capacitive coupling arrangements demonstrated interaction rates of up to 280 Hz. Complementary, early proposals and experiments suggest that inductive coupling schemes are tunable and have the potential to reach the single-photon strong-coupling regime. Here, we follow the latter approach by integrating a partly suspended superconducting quantum interference device (SQUID) into a microwave resonator. The mechanical displacement translates into a time varying flux in the SQUID loop, thereby providing an inductive electromechanical coupling. We demonstrate a sideband-resolved electromechanical system with a tunable vacuum coupling rate of up to 1.62 kHz, realizing sub-aN Hz−1/2 force sensitivities. The presented inductive coupling scheme shows the high potential of SQUID-based electromechanics for targeting the full wealth of the intrinsically nonlinear optomechanics Hamiltonian.


2017 ◽  
Vol 63 ◽  
pp. 1-7
Author(s):  
Iftekhar Ibne Basith ◽  
Esrafil Jedari ◽  
Rashid Rashidzadeh
Keyword(s):  

Author(s):  
Hideharu Amano ◽  
Tadahiro Kuroda ◽  
Hiroshi Nakamura ◽  
Kimiyoshi Usami ◽  
Masaaki Kondo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document