Magnetotransport in two-dimensional lateral superlattices in strongly coupled electron-hole gases

Author(s):  
B. Kardynal ◽  
R. J. Nicholas ◽  
J. Rehman ◽  
K. Takashina ◽  
N. J. Mason
2019 ◽  
Author(s):  
Ayesha Tariq ◽  
M. Abdullah Iqbal ◽  
S. Irfan Ali ◽  
Muhammad Z. Iqbal ◽  
Deji Akinwande ◽  
...  

<p>Nanohybrids, made up of Bismuth ferrites/Carbon allotropes, are extensively used in photocatalytic applications nowadays. Our work proposes a nanohybrid system composed of Bismuth ferrite nanoparticles with two-dimensional (2D) MXene sheets namely, the BiFeO<sub>3</sub> (BFO)/Ti<sub>3</sub>C<sub>2</sub> (MXene) nanohybrid for enhanced photocatalytic activity. We have fabricated the BFO/MXene nanohybrid using simple and low cost double solvent solvothermal method. The SEM and TEM images show that the BFO nanoparticles were attached onto the MXene surface and in the inter-layers of two-dimensional (2D) MXene sheets. The photocatalytic application is tested for the visible light irradiation which showed the highest efficiency among all pure-BFO based photocatalysts, i.e. 100% degradation in 42 min for organic dye (Congo Red) and colorless aqueous pollutant (acetophenone) in 150 min, respectively. The present BFO-based hybrid system exhibited the large surface area of 147 m<sup>2</sup>g<sup>-1</sup>measured via Brunauer-Emmett-Teller (BET) sorption-desorption technique, and is found to be largest among BFO and its derivatives. Also, the photoluminescence (PL) spectra indicate large electron-hole pair generation. Fast and efficient degradation of organic molecules is supported by both factors; larger surface area and lower electron-hole recombination rate. The BFO/MXene nanohybrid presented here is a highly efficient photocatalyst compared to other nanostructures based on pure BiFeO<sub>3</sub> which makes it a promising candidate for many future applications.</p>


1997 ◽  
Vol 55 (20) ◽  
pp. 13677-13681 ◽  
Author(s):  
Ikai Lo ◽  
Jih-Chen Chiang ◽  
Shiow-Fon Tsay ◽  
W. C. Mitchel ◽  
M. Ahoujja ◽  
...  

NANO ◽  
2021 ◽  
Author(s):  
Arslan Usman ◽  
Abdul Sattar ◽  
Hamid Latif ◽  
Muhammad Imran

The impact of phonon and their surrounding environment on exciton and its complexes were investigated in monolayer WSe2 semiconductor. Phonon up-conversion has been studied in past for conventional III–V semiconductors, but its role in two-dimensional layered transition metal dichalcogenides has rarely been explored. We investigated the photoluminescence up-conversion mechanism in WSe2 monolayer and found that a lower energy photon gain energy upto 64[Formula: see text]meV to be up-converted to emission photon at room temperature. Moreover, the phonon-exciton coupling mechanism has also been investigated and the role of dielectric screening has been explored to get complete insight of coulomb’s interaction in these electron-hole pairs. Investigations of charge carrier’s lifetime reveal that boron nitride encapsulated monolayer has shorter recombination time as low as 41 ps as compared to a bare monolayer on SiO2 substrate. These results are very promising for realizing spintronics-based application from two-dimensional layered semiconductors.


Sign in / Sign up

Export Citation Format

Share Document