Remote Sensing of Surface Water

Author(s):  
Geoff Kite ◽  
Alain Pietroniro
Keyword(s):  
2017 ◽  
Vol 100 ◽  
pp. 13-18 ◽  
Author(s):  
Mhosisi Masocha ◽  
Amon Murwira ◽  
Christopher H.D. Magadza ◽  
Rafik Hirji ◽  
Timothy Dube

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Jianfeng Li ◽  
Jiawei Wang ◽  
Liangyan Yang ◽  
Huping Ye

AbstractSri Lanka is an important hub connecting Asia-Africa-Europe maritime routes. It receives abundant but uneven spatiotemporal distribution of rainfall and has evident seasonal water shortages. Monitoring water area changes in inland lakes and reservoirs plays an important role in guiding the development and utilisation of water resources. In this study, a rapid surface water extraction model based on the Google Earth Engine remote sensing cloud computing platform was constructed. By evaluating the optimal spectral water index method, the spatiotemporal variations of reservoirs and inland lakes in Sri Lanka were analysed. The results showed that Automated Water Extraction Index (AWEIsh) could accurately identify the water boundary with an overall accuracy of 99.14%, which was suitable for surface water extraction in Sri Lanka. The area of the Maduru Oya Reservoir showed an overall increasing trend based on small fluctuations from 1988 to 2018, and the monthly area of the reservoir fluctuated significantly in 2017. Thus, water resource management in the dry zone should focus more on seasonal regulation and control. From 1995 to 2015, the number and area of lakes and reservoirs in Sri Lanka increased to different degrees, mainly concentrated in arid provinces including Northern, North Central, and Western Provinces. Overall, the amount of surface water resources have increased.


Author(s):  
Alain Pietroniro ◽  
Jessika Töyrö ◽  
Robert Leconte ◽  
Geoff Kite

2021 ◽  
Author(s):  
Serena Ceola ◽  
Irene Palazzoli

<p>Surface water resources are extremely vulnerable to climate variability and are seriously threatened by human activities. The depletion of surface water is expected to rapidly increase due to the combination of future climate change and world population growth projections. Under this scenario, the impacts of climate and human dynamics on surface water resources represent a global issue, requiring the definition of adequate management strategies that prevent water crisis and guarantee equitable access to freshwater resources. Remote sensing provides data that allow to monitor environmental change processes, such as changes in climatic conditions, land use, and spatial allocation of human settlements and activities. Although many products describing surface water dynamics and urban growth obtained from satellite imagery are available, an integrated analysis of such geospatial information has not been performed yet. Here, we explore the driving role of the variation in key climatic variables (e.g.,  precipitation, temperature, and soil moisture) and the extent of urban areas in the depletion of surface water across the watersheds in the United States by using data derived from remote sensing images and performing a correlation analysis. From our preliminary results, we observe that there is a positive correlation between surface water loss and the level of urbanization in each basin of our study area, meaning that surface water loss increases with the extent of urban area. On the contrary, we find that the correlation between surface water loss and precipitation has a counter-intuitive trend which needs to be further examined.</p>


Sign in / Sign up

Export Citation Format

Share Document