Analysis of Variable Heavy and Light Chain Genes in Follicular Lymphomas of Different Heavy Chain Isotype

Author(s):  
W. M. Aarts ◽  
R. J. Bende ◽  
S. T. Pals ◽  
C. J. M. van Noesel
Blood ◽  
2001 ◽  
Vol 98 (1) ◽  
pp. 238-240 ◽  
Author(s):  
Wilhelmina M. Aarts ◽  
Richard J. Bende ◽  
Janneke G. Bossenbroek ◽  
Steven T. Pals ◽  
Carel J. M. van Noesel

Abstract To investigate B-cell receptor evolution in follicular lymphomas (FLs), immunoglobulin variable heavy chain (VH) gene regions of 3 FLs were analyzed at different time points. One FL with a high somatic mutation load and intraclonal VH gene diversity was investigated in situ. VH gene transcripts were amplified and sequenced from samples of approximately 50 tumor cells isolated from frozen tissue sections by laser microdissection. Interestingly, the mutation pattern of the prevalent subclone in the relapse biopsy was virtually identical to that of a subclone isolated by microdissection from the presentation biopsy 9 years earlier. In a second FL, proof was obtained that the subclone that dominated the relapse sample had already been present in the initial biopsy. The finding that subclones found in the relapses of these FLs had not evolved over time but were preexistent, challenges the concept of antigen-driven B-cell receptor evolution during disease course.


Blood ◽  
2000 ◽  
Vol 95 (9) ◽  
pp. 2922-2929 ◽  
Author(s):  
Wilhelmina M. Aarts ◽  
Richard J. Bende ◽  
Eric J. Steenbergen ◽  
Philip M. Kluin ◽  
Engelbert C. M. Ooms ◽  
...  

The expansion of follicular lymphomas (FLs) resembles, both morphologically and functionally, normal germinal center B-cell growth. The tumor cells proliferate in networks of follicular dendritic cells and are believed to be capable of somatic hypermutation and isotype switching. To investigate the relation between somatic mutation and heavy chain isotype expression, we analyzed the variable heavy (VH) chain genes of 30 FL samples of different isotypes. The VH genes of the FLs were heavily mutated (29.3 mutations on average). In addition, isotype-switched lymphomas contained more somatic mutations than immunoglobulin M–positive lymphomas (33.8 mutations per VH gene versus 23.0, respectively). In all but one of the FLs, the ratios of replacement versus silent mutations in the framework regions were low, independent of the absolute number of somatic mutations and the level of intraclonal variation. Analysis of relapse samples of 4 FLs showed no obvious increase in somatic mutation load in most FLs and a decrease in intraclonal variation in time. In 3 of 4 cases, we obtained evidence for selection of certain subclones, rather than clonal evolution. Our findings question if intraclonal variation is always a reflection of ongoing somatic hypermutation. This may have implications for the concept of antigen-driven lymphomagenesis.


1987 ◽  
Author(s):  
F Tokunaga ◽  
T Miyata ◽  
T Nakamura ◽  
T Morita ◽  
S Iwanaga

Limulus clotting factor, factor C, is a lipopolysaccharide (LPS)-sensitive serine-protease zymogen present in the hemocytes. It is a two-chain glycoprotein (M.W. = 123,000) composed of a heavy chain (M.W. = 80,000) and a light chain (M.W. = 43,000) T. Nakamura et al. (1986) Eur. J. Biochem. 154, 511-521 .On further studies of this zymogen, a single-chain factor C (M.W. = 123,000) was identified by Western blotting technique. The heavy chain had an NH2-terminal sequence of Ser-Gly-Val-Asp-, which was consistent with the NH2-terminal sequence of the single-chain factor C, indicating that the heavy chain is located in the NH2-terminal part of the zymogen. The light chain had an NH22-terminal sequence of Ser-Ser-Gln-Pro-. Incubation of the two-chain zymogen with LPS resulted in the cleavage of a Phe-Ile bond between residues 72 and 73 of the light chain. Concomitant with this cleavage, the A (72.amino acids) and B chains derived from the light chain was formed. The complete amino acid sequence of the A chain was determined by automated Edman degradation. The A chain contained a typical segment which is similar structuraly to those a family of repeats in human β2 -glycoprotein I, complement factors B, Clr, Cls, H, C4b-binding protein, 02, coagulation factor XIII b subunit, haptoglobin a chain, and interleukin 2 receptor. The NH2-terminal sequence of the B chain was Ile-Trp-Asn-Gly-. This chain contained the serine-active site sequence of -ASP-Ala-Cys-Ser-Gly-Asp-SER-Gly-Gly-Pro-.These results indicate that limulus factor C exists in the hemocytes in a single-chain zymogen form and is converted to an active serine-protease by hydrolysis of a specific Phe-Ile peptide bond. The correlation of limulus factor C and mammalian complement proteins was also suggested.


Genetics ◽  
1993 ◽  
Vol 135 (1) ◽  
pp. 171-187 ◽  
Author(s):  
W van der Loo

Abstract Population genetic data are presented which should contribute to evaluation of the hypothesis that the extraordinary evolutionary patterns observed at the b locus of the rabbit immunoglobulin light chain constant region can be the outcome of overdominance-type selection. The analysis of allele correlations in natural populations revealed an excess of heterozygotes of about 10% at the b locus while heterozygote excess was not observed at loci determining the immunoglobulin heavy chain. Data from the published literature, where homozygote advantage was suggested, were reevaluated and found in agreement with data here presented. Gene diversity was evenly distributed among populations and showed similarities with patterns reported for histocompatibility loci. Analysis of genotypic disequilibria revealed strong digenic associations between the leading alleles of heavy and light chain constant region loci in conjunction with trigenic disequilibria corresponding to a preferential association of b locus heterozygosity with the predominant allele of the heavy chain e locus. It is argued that this may indicate compensatory or nonadditive aspects of a putative heterozygosity enhancing mechanism, implying that effects at the light chain might be more pronounced in populations fixed for the heavy chain polymorphism.


2006 ◽  
Vol 203 (7) ◽  
pp. 1721-1732 ◽  
Author(s):  
Matthew A. Inlay ◽  
Tongxiang Lin ◽  
Heather H. Gao ◽  
Yang Xu

V(D)J recombination of immunoglobulin (Ig) heavy (IgH) and light chain genes occurs sequentially in the pro– and pre–B cells. To identify cis-elements that dictate this order of rearrangement, we replaced the endogenous matrix attachment region/Igk intronic enhancer (MiEκ) with its heavy chain counterpart (Eμ) in mice. This replacement, denoted EμR, substantially increases the accessibility of both Vκ and Jκ loci to V(D)J recombinase in pro–B cells and induces Igk rearrangement in these cells. However, EμR does not support Igk rearrangement in pre–B cells. Similar to that in MiEκ−/− pre–B cells, the accessibility of Vκ segments to V(D)J recombinase is considerably reduced in EμR pre–B cells when compared with wild-type pre–B cells. Therefore, Eμ and MiEκ play developmental stage-specific roles in maintaining the sequential rearrangement of IgH and Igk loci by promoting the accessibility of V, D, and J loci to the V(D)J recombinase.


Sign in / Sign up

Export Citation Format

Share Document