Cis Elements
Recently Published Documents





2022 ◽  
Vol 23 (2) ◽  
pp. 746
Bo Li ◽  
Xiangzhan Zhang ◽  
Ruiwei Duan ◽  
Chunhong Han ◽  
Jian Yang ◽  

Anthocyanin accumulation in vacuoles results in red coloration in pear peels. Glutathione S-transferase (GST) proteins have emerged as important regulators of anthocyanin accumulation. Here, a total of 57 PcGST genes were identified in the European pear ‘Bartlett’ (Pyrus communis) through comprehensive genomic analysis. Phylogenetic analysis showed that PcGST genes were divided into 10 subfamilies. The gene structure, chromosomal localization, collinearity relationship, cis-elements in the promoter region, and conserved motifs of PcGST genes were analyzed. Further research indicated that glutamic acid (Glu) can significantly improve anthocyanin accumulation in pear peels. RNA sequencing (RNA-seq) analysis showed that Glu induced the expression of most PcGST genes, among which PcGST57 was most significantly induced. Further phylogenetic analysis indicated that PcGST57 was closely related to GST genes identified in other species, which were involved in anthocyanin accumulation. Transcript analysis indicated that PcGST57 was expressed in various tissues, other than flesh, and associated with peel coloration at different developmental stages. Silencing of PcGST57 by virus-induced gene silencing (VIGS) inhibited the expression of PcGST57 and reduced the anthocyanin content in pear fruit. In contrast, overexpression of PcGST57 improved anthocyanin accumulation. Collectively, our results demonstrated that PcGST57 was involved in anthocyanin accumulation in pear and provided candidate genes for red pear breeding.

PeerJ ◽  
2022 ◽  
Vol 10 ◽  
pp. e12786
Zeyu Zhang ◽  
Shilei Luo ◽  
Zeci Liu ◽  
Zilong Wan ◽  
Xueqin Gao ◽  

Abscisic acid (ABA) is a very important hormone in plants. It regulates growth and development of plants and plays an important role in biotic and abiotic stresses. The Pyrabactin resistance 1-like (PYR/PYL) proteins play a central role in ABA signal transduction pathways. The working system of PYL genes in cucumber, an important economical vegetable (Cucumis sativus L.), has not been fully studied yet. Through bioinformatics, a total of 14 individual PYL genes were identified in Chinese long ‘9930’ cucumber. Fourteen PYL genes were distributed on six chromosomes of cucumber, and their encoded proteins predicted to be distributed in cytoplasm and nucleus. Based on the phylogenetic analysis, the PYL genes of cucumber, Arabidopsis, rice, apple, Brachypodium distachyon and soybeancould be classified into three groups. Genetic structures and conserved domains analysis revealed that CsPYL genes in the same group have similar exons and conserved domains. By predicting cis-elements in the promoters, we found that all CsPYL members contained hormone and stress-related elements. Additionally, the expression patterns of CsPYL genes were specific in tissues. Finally, we further examined the expression of 14 CsPYL genes under ABA, PEG, salt stress. The qRT-PCR results showed that most PYL gene expression levels were up-regulated. Furthermore, with different treatments about 3h, the relative expression of PYL8 was up-regulated and more than 20 times higher than 0h. It indicated that this gene may play an important role in abiotic stress.

2022 ◽  
Vol 22 (1) ◽  
Yu Liang ◽  
Yang Huang ◽  
Kang Chen ◽  
Xiangdong Kong ◽  
Maoteng Li

Abstract Background Brassica napus is an important agricultural species, improving stress resistance was one of the main breeding goals at present. Non-specific lipid transfer proteins (nsLTPs) are small, basic proteins which are involved in some biotic or abiotic stress responses. B. napus is susceptible to a variety of fungal diseases, so identify the BnLTPs and their expression in disease responses is very important. The common reference genome of B. napus does not contain all B. napus genes because of gene presence/absence variations between individuals. Therefore, it was necessary to search for candidate BnLTP genes in the B. napus pangenome. Results In the present study, the BnLTP genes were identified throughout the pangenome, and different BnLTP genes were presented among varieties. Totally, 246 BnLTP genes were identified and could be divided into five types (1, 2, C, D, and G). The classification, phylogenetic reconstruction, chromosome distribution, functional annotation, and gene expression were analyzed. We also identified potential cis-elements that respond to biotic and abiotic stresses in the 2 kb upstream regions of all BnLTP genes. RNA sequencing analysis showed that the BnLTP genes were involved in the response to Sclerotinia sclerotiorum infection. We identified 32 BnLTPs linked to blackleg resistance quantitative trait locus (QTL). Conclusion The identification and analysis of LTP genes in the B. napus pangenome could help to elucidate the function of BnLTP family members and provide new information for future molecular breeding in B. napus.

2022 ◽  
Vol 23 (1) ◽  
pp. 542
Yan Zhang ◽  
Lanjie Zheng ◽  
Liu Yun ◽  
Li Ji ◽  
Guanhui Li ◽  

Catalases (CATs) are present in almost all living organisms and play important roles in plant development and response to various stresses. However, there is relatively little information on CAT genes in wheat and related Triticeae species. A few studies on CAT family genes in wheat have been reported. In this study, ten CAT proteins (TaCATs) were identified in wheat and classified into three groups based on their phylogenetic features and sequence analysis. The analysis of the structure and motif composition of the TaCAT proteins suggested that a segmental duplication event occurred in the TaCAT gene family. Collinearity relationship analysis among different species showed that there were three orthologous CAT genes in rice and in maize. By analyzing the cis-elements in the promoter regions, we speculated that TaCAT genes expression might be regulated by light, oxygen deficit, methyl jasmonate and abscisic acid, and by transcription factors such as MYB. A Gene Ontology (GO)-based analysis showed that TaCAT proteins may be related to the response to various stresses, are cytoplasm localized, and may function as antioxidant enzymes. RT-qPCR and transcriptome data analyses exhibited distinct expression patterns of TaCAT genes in different tissues and in response to various treatments. In this study, a comprehensive analysis of wheat CAT genes was performed, enriching our knowledge of CAT genes and providing a foundation for further functional analyses of this gene family in wheat.

2022 ◽  
Aolong Sun ◽  
Yongliang Li ◽  
Xiaoxiao Zou ◽  
Fenglin Chen ◽  
Ruqiong Cai ◽  

Abstract Background: The CCHC zinc finger proteins (CCHC-ZFPs) are transcription factors that play versatile roles in plant growth, development, and responses to biotic/abiotic stress. However, little is known about the CCHC-ZF genes in bread wheat (Triticum aestivum), an important food crop.Results: In this study, 50 TaCCHC-ZF genes were identified and distributed unevenly on 21 wheat chromosomes. According to the phylogenetic features, the 50 TaCCHC-ZF genes were classified into eight groups with specific motifs and gene structures. 43 TaCCHC-ZF genes were identified as segmentally duplicated genes that formed 36 segmental duplication gene pairs. Additionally, the collinearity analyses between wheat and eight other representative plant species showed that wheat had closer phylogenetic relationships with monocots compared to dicots. A total of 636 cis-elements related to environmental stress and phytohormone responsiveness were identified in the promoter of TaCCHC-ZF genes. Moreover, GO enrichment results revealed that all 50 TaCCHC-ZF genes were annotated under metal ion binding and nucleic acid binding. 91 miRNA binding sites within the 34 TaCCHC-ZF genes were identified by miRNA targets analyses, indicating that the expression of TaCCHC-ZF genes could be regulated by the miRNAs. Based on published transcriptome data, 38 TaCCHC-ZF genes were identified as DEGs, and 15 TaCCHC-ZF genes among them were verified by qRT-PCR assays, which showed response to drought, heat, or simultaneous response of them.Conclusions: This study systematically explored the gene structures, evolutionary characteristics, and potential roles during environmental responses of TaCCHC-ZF genes, providing a foundation for further investigation and application of TaCCHC-ZF genes in the molecular breeding of T. aestivum.

2021 ◽  
Gajendra Singh Jeena ◽  
Ujjal Jyoti Phukan ◽  
Neeti Singh ◽  
Ashutosh Joshi ◽  
Alok Pandey ◽  

ABSCISIC ACID REPRESSOR-1 (ABR1), an APETALA2 (AP2) domain containing transcription factor (TF) contribute important function against variety of external cues. Here, we report an AP2/ERF TF, AtERF60 that serves as an important regulator of ABR1 gene. AtERF60 is induced in response to drought, salt, abscisic acid (ABA), salicylic acid (SA), and bacterial pathogen PstDC3000 infection. AtERF60 interacts with DEHYDRATION RESPONSE ELEMENTS (DRE1/2) and GCC box indicating its ability to regulate multiple responses. Overexpression of AtERF60 results in the drought and salt stress tolerant phenotype in both seedling and mature Arabidopsis plants in comparison with the wild type (WT-Col). However, mutation in AtERF60 showed hyperactive response against drought and salt stress in comparison with its overexpression and WT. Microarray and qRT-PCR analysis of overexpression and mutant lines indicated that AtERF60 regulates both abiotic and biotic stress inducible genes. One of the differentially expressing transcripts was ABR1 and we found that AtERF60 interacts with the DRE cis-elements present in the ABR1 promoter. The mutation in AtERF60 showed ABA hypersensitive response, increased ABA content, and reduced susceptibility to PstDC3000. Altogether, we conclude that AtERF60 represses ABR1 transcript by binding with the DRE cis-elements and modulates both abiotic and biotic stress responses in Arabidopsis.

Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 37
Amin Abedi ◽  
Zahra Hajiahmadi ◽  
Mojtaba Kordrostami ◽  
Qassim Esmaeel ◽  
Cédric Jacquard

The LysM receptor-like kinases (LysM-RLKs) play a crucial role in plant symbiosis and response to environmental stresses. Brassica napus, B. rapa, and B. oleracea are utilized as valuable vegetables. Different biotic and abiotic stressors affect these crops, resulting in yield losses. Therefore, genome-wide analysis of the LysM-RLK gene family was conducted. From the genome of the examined species, 33 LysM-RLK have been found. The conserved domains of Brassica LysM-RLKs were divided into three groups: LYK, LYP, and LysMn. In the Brassica LysM-RLK gene family, only segmental duplication has occurred. The Ka/Ks ratio for the duplicated pair of genes was less than one indicating that the genes’ function had not changed over time. The Brassica LysM-RLKs contain 70 cis-elements, indicating that they are involved in stress response. 39 miRNA molecules were responsible for the post-transcriptional regulation of 12 Brassica LysM-RLKs. A total of 22 SSR loci were discovered in 16 Brassica LysM-RLKs. According to RNA-seq data, the highest expression in response to biotic stresses was related to BnLYP6. According to the docking simulations, several residues in the active sites of BnLYP6 are in direct contact with the docked chitin and could be useful in future studies to develop pathogen-resistant B. napus. This research reveals comprehensive information that could lead to the identification of potential genes for Brassica species genetic manipulation.

Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 2
Farrukh Azeem ◽  
Usman Ijaz ◽  
Muhammad Amjad Ali ◽  
Sabir Hussain ◽  
Muhammad Zubair ◽  

Potassium (K+) is one of the most important cations that plays a significant role in plants and constitutes up to 10% of plants’ dry weight. Plants exhibit complex systems of transporters and channels for the distribution of K+ from soil to numerous parts of plants. In this study, we have identified 39 genes encoding putative K+ transport-related genes in Vigna radiata. Chromosomal mapping of these genes indicated an uneven distribution across eight out of 11 chromosomes. Comparative phylogenetic analysis of different plant species, i.e., V. radiata, Glycine max, Cicer arietinum, Oryza sativa, and Arabidopsis thaliana, showed their strong conservation in different plant species. Evolutionary analysis of these genes suggests that gene duplication is a major route of expansion for this family in V. radiata. Comprehensive promoter analysis identified several abiotic stresses related to cis-elements in the promoter regions of these genes, suggesting their role in abiotic stress tolerance. Our additional analyses indicated that abiotic stresses adversely affected the chlorophyll concentration, carotenoids, catalase, total soluble protein concentration, and the activities of superoxide and peroxidase in V. radiata. It also disturbs the ionic balance by decreasing the uptake of K+ content and increasing the uptake of Na+. Expression analysis from high-throughput sequencing data and quantitative real-time PCR experiments revealed that several K+ transport genes were expressed in different tissues (seed, flower, and pod) and in abiotic stress-responsive manners. A highly significant variation of expression was observed for VrHKT (1.1 and 1.2), VrKAT (1 and 2) VrAKT1.1, VrAKT2, VrSKOR, VrKEA5, VrTPK3, and VrKUP/HAK/KT (4, 5, and 8.1) in response to drought, heat or salinity stress. It reflected their potential roles in plant growth, development, or stress adaptations. The present study gives an in-depth understanding of K+ transport system genes in V. radiata and will serve as a basis for a functional analysis of these genes.

Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 11
Yuzhen Zhou ◽  
Olena Kishchenko ◽  
Anton Stepanenko ◽  
Guimin Chen ◽  
Wei Wang ◽  

Duckweed plants play important roles in aquatic ecosystems worldwide. They rapidly accumulate biomass and have potential uses in bioremediation of water polluted by fertilizer runoff or other chemicals. Here we studied the assimilation of two major sources of inorganic nitrogen, nitrate (NO3−) and ammonium (NH4+), in six duckweed species: Spirodela polyrhiza, Landoltia punctata, Lemna aequinoctialis, Lemna turionifera, Lemna minor, and Wolffia globosa. All six duckweed species preferred NH4+ over NO3− and started using NO3− only when NH4+ was depleted. Using the available genome sequence, we analyzed the molecular structure and expression of eight key nitrogen assimilation genes in S. polyrhiza. The expression of genes encoding nitrate reductase and nitrite reductase increased about 10-fold when NO3− was supplied and decreased when NH4+ was supplied. NO3− and NH4+ induced the glutamine synthetase (GS) genes GS1;2 and the GS2 by 2- to 5-fold, respectively, but repressed GS1;1 and GS1;3. NH4+ and NO3− upregulated the genes encoding ferredoxin- and NADH-dependent glutamate synthases (Fd-GOGAT and NADH-GOGAT). A survey of nitrogen assimilation gene promoters suggested complex regulation, with major roles for NRE-like and GAATC/GATTC cis-elements, TATA-based enhancers, GA/CTn repeats, and G-quadruplex structures. These results will inform efforts to improve bioremediation and nitrogen use efficiency.

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261215
Qurat-ul ain-Ali ◽  
Nida Mushtaq ◽  
Rabia Amir ◽  
Alvina Gul ◽  
Muhammad Tahir ◽  

Dehydration Responsive Element Binding (DREB) regulates the expression of numerous stress-responsive genes, and hence plays a pivotal role in abiotic stress responses and tolerance in plants. The study aimed to develop a complete overview of the cis-acting regulatory elements (CAREs) present in S. tuberosum DREB gene promoters. A total of one hundred and four (104) cis-regulatory elements (CREs) were identified from 2.5kbp upstream of the start codon (ATG). The in-silico promoter analysis revealed variable sets of cis-elements and functional diversity with the predominance of light-responsive (30%), development-related (20%), abiotic stress-responsive (14%), and hormone-responsive (12%) elements in StDREBs. Among them, two light-responsive elements (Box-4 and G-box) were predicted in 64 and 61 StDREB genes, respectively. Two development-related motifs (AAGAA-motif and as-1) were abundant in StDREB gene promoters. Most of the DREB genes contained one or more Myeloblastosis (MYB) and Myelocytometosis (MYC) elements associated with abiotic stress responses. Hormone-responsive element i.e. ABRE was found in 59 out of 66 StDREB genes, which implied their role in dehydration and salinity stress. Moreover, six proteins were chosen corresponding to A1-A6 StDREB subgroups for secondary structure analysis and three-dimensional protein modeling followed by model validation through PROCHECK server by Ramachandran Plot. The predicted models demonstrated >90% of the residues in the favorable region, which further ensured their reliability. The present study also anticipated pocket binding sites and disordered regions (DRs) to gain insights into the structural flexibility and functional annotation of StDREB proteins. The protein association network determined the interaction of six selected StDREB proteins with potato proteins encoded by other gene families such as MYB and NAC, suggesting their similar functional roles in biological and molecular pathways. Overall, our results provide fundamental information for future functional analysis to understand the precise molecular mechanisms of the DREB gene family in S. tuberosum.

Sign in / Sign up

Export Citation Format

Share Document