scholarly journals Variable heavy-chain gene analysis of follicular lymphomas: subclone selection rather than clonal evolution over time

Blood ◽  
2001 ◽  
Vol 98 (1) ◽  
pp. 238-240 ◽  
Author(s):  
Wilhelmina M. Aarts ◽  
Richard J. Bende ◽  
Janneke G. Bossenbroek ◽  
Steven T. Pals ◽  
Carel J. M. van Noesel

Abstract To investigate B-cell receptor evolution in follicular lymphomas (FLs), immunoglobulin variable heavy chain (VH) gene regions of 3 FLs were analyzed at different time points. One FL with a high somatic mutation load and intraclonal VH gene diversity was investigated in situ. VH gene transcripts were amplified and sequenced from samples of approximately 50 tumor cells isolated from frozen tissue sections by laser microdissection. Interestingly, the mutation pattern of the prevalent subclone in the relapse biopsy was virtually identical to that of a subclone isolated by microdissection from the presentation biopsy 9 years earlier. In a second FL, proof was obtained that the subclone that dominated the relapse sample had already been present in the initial biopsy. The finding that subclones found in the relapses of these FLs had not evolved over time but were preexistent, challenges the concept of antigen-driven B-cell receptor evolution during disease course.

Blood ◽  
2011 ◽  
Vol 118 (4) ◽  
pp. e1-e15 ◽  
Author(s):  
Aurore Perrot ◽  
Cédric Pionneau ◽  
Sophie Nadaud ◽  
Frédéric Davi ◽  
Véronique Leblond ◽  
...  

Abstract Chronic lymphocytic leukemia (CLL) is characterized by a highly variable clinical course with 2 extreme subsets: indolent, ZAP70− and mutated immunoglobulin heavy chain gene (M-CLL); and aggressive, ZAP70+ and unmutated immunoglobulin heavy chain (UM-CLL). Given the long-term suspicion of antigenic stimulation as a primum movens in the disease, the role of the B-cell receptor has been extensively studied in various experimental settings; albeit scarcely in a comparative dynamic proteomic approach. Here we use a quantitative 2-dimensional fluorescence difference gel electrophoresis technology to compare 48 proteomic profiles of the 2 CLL subsets before and after anti-IgM ligation. Differentially expressed proteins were subsequently identified by mass spectrometry. We show that unstimulated M- and UM-CLL cells display distinct proteomic profiles. Furthermore, anti-IgM stimulation induces a specific proteomic response, more pronounced in the more aggressive CLL. Statistical analyses demonstrate several significant protein variations according to stimulation conditions. Finally, we identify an intermediate form of M-CLL cells, with an indolent profile (ZAP70−) but sharing aggressive proteomic profiles alike UM-CLL cells. Collectively, this first quantitative and dynamic proteome analysis of CLL further dissects the complex molecular pathway after B-cell receptor stimulation and depicts distinct proteomic profiles, which could lead to novel molecular stratification of the disease.


2021 ◽  
Author(s):  
Jun Li ◽  
Yurong Pan ◽  
Qingqing Ma ◽  
Long Ma ◽  
Bin Shi ◽  
...  

Abstract Background Colonization of gut microorganism is related to maturation of B cells in peripheral immune organs. This study aims to investigate the effect of intestinal microflora in Germ-free (GF), Specific Pathogen-free (SPF) and Clean (CL) BALB/C mice to small intestine total B-cell and memory B-cell receptor (BCR) complementary-determining region 3 (CDR3) repertoire. Results The composition and characteristics of intestinal microflora were analyzed by 16S rDNA sequencing. Genomic DNA extracted from small intestine tissue and memory B-cells of GF, SPF and CL mice were conducted via high-throughput DNA sequencing methods. As expected, significant differences of gut microflora diversity were observed in the three mice groups. CL group showed the most diversity, followed by SPF group, and GF group had the lowest diversity. Moreover, anormogenesis of intestinal lymphoid tissue were observed in GF mice. Diversity of the BCR heavy chain CDR3 repertoire in memory B cells were significant difference among three groups, but not in total B cells. The nucleotide polymorphism, usage frequency of gene segments (V, D, J, V–J gene segments) and amino acid of total B cells and memory B cells CDR3 were comparable among three mice groups, and there was significant difference between CL and GF mice groups. Conclusions The results of this study advocate that the colonization of intestinal microorganisms affect the diversity of B cells CDR3 repertoire. Elucidating mechanism of microbiome participated in the function of intestinal mucosal immune system may have positive effects on human health, and it requires further investigation.


Blood ◽  
1987 ◽  
Vol 70 (2) ◽  
pp. 536-541 ◽  
Author(s):  
CA Felix ◽  
GH Reaman ◽  
SJ Korsmeyer ◽  
GF Hollis ◽  
PA Dinndorf ◽  
...  

Abstract We examined immunoglobulin (Ig) heavy chain, K light chain, and T cell receptor (TCR) gamma and beta gene configuration in the leukemic cells from a series of infants aged less than 1 year with acute lymphoblastic leukemia (ALL). Each of these 11 cases demonstrated leukemic cell surface antigens that have been correlated with a B cell precursor phenotype. Of the 11, lymphoblasts of 4 retained the germline configuration of both Ig and TCR loci, whereas 7 had rearranged the Ig heavy chain gene. Two of these seven showed light chain gene rearrangement. TCB beta chain rearrangement had occurred in only one of the 11 patients' tumors. No TCR gamma chain rearrangements were identified. These results are in contrast to earlier studies of B cell precursor ALL in children in which Ig heavy chain gene rearrangements were evident in every case and approximately 40% showed Ig light chain rearrangement as well. In addition, 45% of cases of B cell precursor ALL of children had rearranged their gamma TCR genes, and 20% had rearranged beta. These data suggest that ALL in infancy represents an earlier stage of B cell development than is found in B cell precursor ALL of children. ALL in the infant age group has been associated with the worst prognosis of all patients with ALL. This study suggests that the disease in infants differs not only clinically, but also at the molecular genetic level, from the disease in children.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 112-112
Author(s):  
Sami N. Malek ◽  
Denzil Bernard ◽  
Zhang Xiao Ying ◽  
Luke F. Peterson ◽  
Nisar A. Amin ◽  
...  

Abstract Introduction: Follicular lymphoma (FL) constitutes the second most common non-Hodgkin's lymphoma in the Western world. FL carries multiple recurrently mutated genes that are under active investigation. However, due to the relatively small number of published sequenced cases, knowledge regarding the coding genome in FL is still evolving. Methods: To further our understanding of the genetic basis of FL, we used solution exon capture of sheared and processed genomic DNA isolated from highly purified light chain restricted B-cells and paired CD3+ T-cells from 54 FL cases for paired-end massively parallel sequencing (WES). Data were subsequently analyzed using bioinformatics pipelines including the variant callers MuTect v.1.1.4, Strelka v.1.0.13, and VarScan2 v.2.3.7. Candidate somatically acquired gene mutations with variant allele frequencies (VAFs) >0.15 were confirmed using Sanger sequencing. Selected mutations were validated in an expansion cohort of 120 FL. Results: We identified heterozygous missense mutations in the mTOR regulator RRAGC in 10% of FL. The RRAGC mutations targeted multiple hotspot residues (amino acid 115, 118 and 119). RRAGC forms heterodimers with either RRAGA or RRAGB that under conditions of amino acid sufficiency facilitate recruitment of mTOR through the raptor subunit to lysosomal membranes. At the lysosomal surface, multiple protein complexes, each containing various proteins regulate mTOR activation through RHEB. To gain insights into the functional consequences of RRAGC mutations, we performed 3-dimensional modeling of FL-associated RRAGC mutations and located the mutations into relatively close proximity to the RRAGC GTP/GDP binding site. Energy calculations did not identify strong effects of mutated amino acid residues on the binding of GTP/GDP to RRAGC. We performed studies of the effects of RRAGC mutants on mTOR activity as measured through S6-kinase phosphorylation. In transient transfection systems (293T and HELA) achieving expression slightly above endogenous RRAGC levels, performed under conditions of leucine starvation or sufficiency, we did not identify differences in baseline mTOR activation. In stably transfected 293T cell lines (expressing RRAGB and RRAGC proteins above endogenous levels), that were starved for leucine for 1 hour, we detected modestly elevated p-S6K levels in RRAGC mutant versus wild type transfectants, suggesting a mild intrinsic activation phenotype of RRAGC mutations. Experiments in lentivirally-transfected lymphoma cell lines, including RRAGC binding studies to raptor and folliculin (a RRAGC regulator) are in progress and will be updated at the meeting. Curiously, we did not identify mutations in the other three small GTP binding proteins that are part of the same amino acid sensing pathway (RRAGA, RRAGB or RRAGD), potentially pointing to a unique advantage conferred by RRAGC mutants on FL B cells. We identified additional mutations (combined ~15%) in other mTOR components linked to lysosomal amino acid sensing, including recurrent mutations in the v-ATPase subunit ATP6V1B2 and the accessory subunit ATP6VAP1. The mutations in RRAGC and v-ATPase together highlight a previously unidentified role of the amino acid sensing pathway that regulates mTOR in FL pathogenesis. We have discovered a high frequency of mutations (40%) in the surrogate light chain gene IGLL5 in FL, a critical component of the pre-B-cell receptor. Mutations sharply cluster in the N-terminal 70 amino acid of IGLL5, a region known as the non-Ig domain of IGLL5. The non-Ig domain of IGLL5 has been implicated in influencing pre-B-cell receptor signaling and receptor surface expression as well as interaction with extracellular ligands. The mutational data suggest an unexpected role of IGLL5 in the pathogenesis of FL and work is in progress studying IGLL5 expression in primary FL samples. Conclusion: This large WES study of 54 FL identifies novel recurrently mutated genes and pathways in FL, including frequent mutations in genes involved in amino acid signaling to mTOR (RRAGC and v-ATPase) as well as pre-B-cell receptor signaling (the surrogate light chain gene IGLL5) and multiple other novel recurrently mutated genes that will be updated at the meeting. These data substantially broaden our understanding of the genetic basis of FL and provide clues to therapeutically targeting specific pathways in FL. Disclosures Malek: Abbvie: Equity Ownership; Gilead Sciences: Equity Ownership; Janssen Pharmaceuticals: Research Funding.


1999 ◽  
Vol 190 (4) ◽  
pp. 461-470 ◽  
Author(s):  
Norihiko Watanabe ◽  
Sazuku Nisitani ◽  
Koichi Ikuta ◽  
Misao Suzuki ◽  
Tsutomu Chiba ◽  
...  

Surface-expressed immunoglobulin (Ig) has been shown to have a critical role in allelic exclusion of Ig heavy (H) and light (L) chains. Although various degrees of suppression of endogenous Ig expression are observed in Ig transgenic (Tg) mice, it was not clear whether this difference is due to different onsets of Tg expression or to different levels of Tg expression, which are obviously affected by integration sites of the transgene. In this study we generated antierythrocyte antibody Tg mice that carry tandem joined H and L chain transgenes (H+L) and confirmed that homozygosity of the transgene loci enhances the level of transgene expression as compared with heterozygosity. Suppression of endogenous H and L chain gene expression was stronger in homozygous than in heterozygous Tg mice. Similar results were obtained in control Tg mice carrying the H chain only. These results suggest that there is a threshold of the B cell receptor expression level that induces allelic exclusion. In addition, despite the same B cell receptor specificity, the size of Tg autoreactive B-1 cell compartment in the peritoneal cavity is larger in homozygous than in heterozygous mice, although the number of the Tg B-2 cell subset decreased in the spleen and bone marrow of homozygous Tg mice as compared with heterozygous Tg mice. By contrast, homozygosity of the H chain alone Tg line, which does not recognize self-antigens, did not increase the size of the peritoneal B-1 subset. These results suggest that the size of the B-1 cell subset in the Tg mice may depend on strength of signals through B cell receptors triggered by self-antigens.


2019 ◽  
Author(s):  
Julian Q. Zhou ◽  
Steven H. Kleinstein

AbstractB cell clonal expansion is vital for adaptive immunity. High-throughput B cell receptor (BCR) sequencing enables investigating this process, but requires computational inference to identify clonal relationships. This inference usually relies on only the BCR heavy chain, as most current protocols do not preserve heavy:light chain pairing. The extent to which paired light chains aids inference is unknown. Using human single-cell paired BCR datasets, we assessed the ability of heavy chain-based clonal clustering to identify clones. Of the expanded clones identified, <20% grouped cells expressing inconsistent light chains. Heavy chains from these misclustered clones contained more distant junction sequences and shared fewer V segment mutations than the accurate clones. This suggests that additional heavy chain information could be leveraged to refine clonal relationships. Conversely, light chains were insufficient to refine heavy chain-based clonal clusters. Overall, the BCR heavy chain alone is sufficient to identify clonal relationships with confidence.


2002 ◽  
Vol 14 (5) ◽  
pp. 335-342 ◽  
Author(s):  
Inga-Lill Mårtensson ◽  
Antonius Rolink ◽  
Fritz Melchers ◽  
Cornelia Mundt ◽  
Steve Licence ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document