First principles calculation of the dipole moments of small mixed Ge/Te semiconductor clusters

Author(s):  
L. C. Balbás ◽  
A. Rubio ◽  
J. L. Martins
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pengsen Zhao ◽  
Guifa Li ◽  
Haizhong Zheng ◽  
Shiqiang Lu ◽  
Ping Peng

AbstractThe contribution of defect structure to the catalytic property of α-MnO2 nanorod still keeps mysterious right now. Using microfacet models representing defect structure and bulk models with high Miller index, several parameters, such as cohesive energy, surface energy, density of state, electrostatic potential, et al., have been used to investigate the internal mechanism of their chemical activities by first-principles calculation. The results show that the trend in surface energies of microfacet models follows as Esurface[(112 × 211)] > Esurface[(110 × 211)] > Esurface[(100 × 211)] > Esurface[(111 × 211)] > Esurface[(112 × 112)] > Esurface[(111 × 112)], wherein all of them are larger than that of bulk models. So the chemical activity of defect structure is much more powerful than that of bulk surface. Deep researches on electronic structure show that the excellent chemical activity of microfacet structure has larger value in dipole moments and electrostatic potential than that of bulk surface layer. And the microfacet models possess much more peaks of valent electrons in deformantion electronic density and molecular orbital. Density of state indicates that the excellent chemical activity of defect structure comes from their proper hybridization in p and d orbitals.


1981 ◽  
Vol 42 (C6) ◽  
pp. C6-625-C6-627 ◽  
Author(s):  
P. E. Van Camp ◽  
V. E. Van Doren ◽  
J. T. Devreese

2021 ◽  
Vol 27 (6) ◽  
Author(s):  
Wen-Guang Li ◽  
Yun-Dan Gan ◽  
Zhi-Xin Bai ◽  
Ming-Jian Zhang ◽  
Fu-Sheng Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document