The analysis of two bi-millennial series: Tiber and Po river floods

Author(s):  
Dario Camuffo ◽  
Silvia Enzi
Keyword(s):  
Po River ◽  
2021 ◽  
Author(s):  
Riccardo Brunetta ◽  
Paolo Ciavola

<p>In the period 1950s-60s, the Po river Delta (Northern Italy) was hit by several floods. Agricultural fields were covered by water and many of them remained submerged since. As a consequence of the massive sediment injection into the system, this lead to the birth of new tidal flats around the tip of the Delta. The evolution of these environments over 50 years was studied, as they may be taken as an example for future reconstruction of intertidal areas. The sediment distribution and the morphological evolution of a young tidal flat of about 10 ha located in the Northern part of the Po della Pila branch were studied by undertaking fieldwork since October 2018, including detailed topographic surveys using a UAV, sedimentological analyses, and a study of sediment deposition rates. An extended crevasse splay covers the central part of the flat. The granulometry is predominately fine (Silty clay and Clayey silt), except for the central area, where the sand percentage increases (Loam and Silty sand). This surface distribution is uniform down to ~10 cm; the sand percentage increases instead within the sediment column from ~10 to 25 cm next to the mouths of the channels. The tidal flat experienced a positive sediment budget and it was characterized by higher rates of accretion after the Po river floods. These observations suggest that the tidal channels are fed by sediment from the Po River branch. Orthophotos from the 1950s show that the tidal flat is about 17 - 20 years old and its formation was influenced by human intervention and river floods. The work aims at finally comparing this case study with other tidal flats and salt marshes worldwide characterized by similar and different tidal regimes, to identify the optimal elevation for vegetation to establish and flourish, to support the future restoration of these environments.</p>


2002 ◽  
Vol 26 (1) ◽  
pp. 23-31 ◽  
Author(s):  
Alessandra Cairo ◽  
Sandro Meloni ◽  
Bruno Messiga ◽  
Massimo Oddone ◽  
Maria Pia Di Bella
Keyword(s):  

Author(s):  
Conrado Rudorff ◽  
Sarah Sparrow ◽  
Marcia R. G. Guedes ◽  
Simon. F. B. Tett ◽  
João Paulo L. F. Brêda ◽  
...  

Environments ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 25
Author(s):  
Caterina M. Antognazza ◽  
Isabella Vanetti ◽  
Vanessa De Santis ◽  
Adriano Bellani ◽  
Monica Di Francesco ◽  
...  

The reintroduction of the extinct beluga sturgeon (Huso huso L.), an anadromous species with economic and traditional relevance, is a priority in next conservation strategies in Northern Italy. The EU-LIFE NATURA project aims to reintroduce the beluga sturgeon in the Po River basin through a captive breeding program. Critical requirements for the success of the program are river connectivity and knowledge of genetic diversity of the selected broodstocks to ensure self-sustainability of reintroduced populations. Here, the four broodstocks used for the reintroduction of beluga sturgeon have been genetically screened, genotyping 13 loci and sequencing mitochondrial DNA cytochrome b (Cyt b) gene and the entire mitochondrial DNA control region (D-Loop). The four broodstocks showed a medium-high level of nuclear genetic variability and the presence of two sub-populations, evidencing a total level of inbreeding coefficients able to sustain the good potential as future breeders. Mitochondrial analyses showed a genetic variability comparable to wild populations, further strengthening the positive potential of the investigated broodstock. Therefore, this study, showed how the degree of genetic diversity found within the four broodstocks used for H. huso reintroduction in the Po River basin could be suitable to ensure the success of the program, avoiding the inbreeding depression associated with founder effect and captive breeding.


2021 ◽  
Vol 6 (2) ◽  
pp. 61
Author(s):  
Matteo Riccò ◽  
Simona Peruzzi ◽  
Federica Balzarini

In Italy, human cases of West Nile virus (WNV) infection have been recorded since 2008, and seasonal outbreaks have occurred almost annually. In this study, we summarize available evidences on the epidemiology of WNV and West Nile neuro-invasive disease (WNND) in humans reported between 2012 and 2020. In total, 1145 WNV infection cases were diagnosed; of them 487 (42.5%) had WNND. A significant circulation of the pathogen was suggested by studies on blood donors, with annual incidence rates ranging from 1.353 (95% confidence intervals (95% CI) 0.279–3.953) to 19.069 cases per 100,000 specimens (95% CI 13.494–26.174). The annual incidence rates of WNND increased during the study period from 0.047 cases per 100,000 (95% CI 0.031–0.068) in 2012, to 0.074 cases per 100,000 (95% CI 0.054–0.099) in 2020, peaking to 0.377 cases per 100,000 (95% CI 0.330–0.429) in 2018. There were 60 deaths. Cases of WNND were clustered in Northern Italy, particularly in the Po River Valley, during the months of August (56.7%) and September (27.5%). Higher risk for WNND was reported in subjects of male sex (risk ratio (RR) 1.545, 95% CI 1.392–1.673 compared to females), and in older age groups (RR 24.46, 95% CI 15.61–38.32 for 65–74 y.o.; RR 43.7, 95% CI 28.33–67.41 for subjects older than 75 years), while main effectors were identified in average air temperatures (incidence rate ratio (IRR) 1.3219, 95% CI 1.0053–1.7383), population density (IRR 1.0004, 95% CI 1.0001–1.0008), and occurrence of cases in the nearby provinces (IRR 1.0442, 95% CI 1.0340–1.0545). In summary, an enhanced surveillance is vital for the early detection of human cases and the prompt implementation of response measures.


2014 ◽  
Vol 70 (11) ◽  
pp. 1825-1837 ◽  
Author(s):  
K. De Vleeschauwer ◽  
J. Weustenraad ◽  
C. Nolf ◽  
V. Wolfs ◽  
B. De Meulder ◽  
...  

Urbanization and climate change trends put strong pressures on urban water systems. Temporal variations in rainfall, runoff and water availability increase, and need to be compensated for by innovative adaptation strategies. One of these is stormwater retention and infiltration in open and/or green spaces in the city (blue–green water integration). This study evaluated the efficiency of three adaptation strategies for the city of Turnhout in Belgium, namely source control as a result of blue–green water integration, retention basins located downstream of the stormwater sewers, and end-of-pipe solutions based on river flood control reservoirs. The efficiency of these options is quantified by the reduction in sewer and river flood frequencies and volumes, and sewer overflow volumes. This is done by means of long-term simulations (100-year rainfall simulations) using an integrated conceptual sewer–river model calibrated to full hydrodynamic sewer and river models. Results show that combining open, green zones in the city with stormwater retention and infiltration for only 1% of the total city runoff area would lead to a 30 to 50% reduction in sewer flood volumes for return periods in the range 10–100 years. This is due to the additional surface storage and infiltration and consequent reduction in urban runoff. However, the impact of this source control option on downstream river floods is limited. Stormwater retention downstream of the sewer system gives a strong reduction in peak discharges to the receiving river. However due to the difference in response time between the sewer and river systems, this does not lead to a strong reduction in river flood frequency. The paper shows the importance of improving the interface between urban design and water management, and between sewer and river flood management.


2016 ◽  
Vol 32 (6) ◽  
pp. 1284-1285 ◽  
Author(s):  
M. Lanzoni ◽  
A. Gavioli ◽  
V. Aschonitis ◽  
M. Merighi ◽  
E. A. Fano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document